9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lithium inhibits hepatic gluconeogenesis and phosphoenolpyruvate carboxykinase gene expression.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Incubation of isolated hepatocytes from fasted rats with 20 mM LiCl for 1 h decreased glucose production from lactate, pyruvate, and alanine. In addition, phosphoenolpyruvate carboxykinase (PEPCK) gene expression in FTO-2B rat hepatoma cells was inhibited by treatment with LiCl. Lithium was also able to counteract the increased PEPCK mRNA levels caused by both Bt2cAMP and dexamethasone, in a concentration-dependent manner. A chimeric gene containing the PEPCK promoter (-550 to +73) linked to the amino-3-glycosyl phosphotransferase (neo) structural gene was transduced into FTO-2B cells using a Moloney murine leukemia virus-based retrovirus. In these infected cells, 20 mM LiCl decreased both the concentration of neo mRNA transcribed from the PEPCK-neo chimeric gene and mRNA from the endogenous PEPCK gene. Lithium also inhibited the stimulatory effect of Bt2cAMP and dexamethasone on both genes. The stability of neo mRNA was not altered by lithium, since in cells infected with retrovirus containing only the neo gene transcribed via the retroviral 5'-LTR and treated with 20 mM LiCl, no change in neo mRNA levels was observed. The intraperitoneal administration of LiCl to rats caused a decrease in hepatic PEPCK mRNA, indicating that lithium could also modify gene expression in vivo. The effects of lithium were not due to an increase in the concentration of insulin in the blood but were correlated with an increase in hepatic glycogen and fructose 2,6-bisphosphate levels. These results indicate that lithium ions, at concentrations normally used therapeutically for depression in humans, can inhibit glucose synthesis in the liver by a mechanism which can selectively modify the expression of hepatic phosphoenolpyruvate carboxykinase.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          0021-9258
          0021-9258
          Feb 15 1992
          : 267
          : 5
          Affiliations
          [1 ] Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
          Article
          10.1016/S0021-9258(19)50669-X
          1371108
          09042b7f-9d7f-4472-b9e7-a8d14e1bd831
          History

          Comments

          Comment on this article