2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Extremity weakness, fatigue, and postural instability often contribute to mobility deficits in persons after stroke. Wearable technologies are increasingly being utilized to track many health-related parameters across different patient populations. The purpose of this systematic review was to identify how wearable technologies have been used over the past decade to assess gait and mobility in persons with stroke.

          Methods

          We performed a systematic search of Ovid MEDLINE, CINAHL, and Cochrane databases using select keywords. We identified a total of 354 articles, and 13 met inclusion/exclusion criteria. Included studies were quality assessed and data extracted included participant demographics, type of wearable technology utilized, gait parameters assessed, and reliability and validity metrics.

          Results

          The majority of studies were performed in either hospital-based or inpatient settings. Accelerometers, activity monitors, and pressure sensors were the most commonly used wearable technologies to assess gait and mobility post-stroke. Among these devices, spatiotemporal parameters of gait that were most widely assessed were gait speed and cadence, and the most common mobility measures included step count and duration of activity. Only 4 studies reported on wearable technology validity and reliability metrics, with mixed results.

          Conclusion

          The use of various wearable technologies has enabled researchers and clinicians to monitor patients’ activity in a multitude of settings post-stroke. Using data from wearables may provide clinicians with insights into their patients’ lived-experiences and enrich their evaluations and plans of care. However, more studies are needed to examine the impact of stroke on community mobility and to improve the accuracy of these devices for gait and mobility assessments amongst persons with altered gait post-stroke.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12984-021-00863-x.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement

          Systematic reviews should build on a protocol that describes the rationale, hypothesis, and planned methods of the review; few reviews report whether a protocol exists. Detailed, well-described protocols can facilitate the understanding and appraisal of the review methods, as well as the detection of modifications to methods and selective reporting in completed reviews. We describe the development of a reporting guideline, the Preferred Reporting Items for Systematic reviews and Meta-Analyses for Protocols 2015 (PRISMA-P 2015). PRISMA-P consists of a 17-item checklist intended to facilitate the preparation and reporting of a robust protocol for the systematic review. Funders and those commissioning reviews might consider mandating the use of the checklist to facilitate the submission of relevant protocol information in funding applications. Similarly, peer reviewers and editors can use the guidance to gauge the completeness and transparency of a systematic review protocol submitted for publication in a journal or other medium.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart Disease and Stroke Statistics—2020 Update

            Circulation
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies

              Introduction Many questions in medical research are investigated in observational studies [1]. Much of the research into the cause of diseases relies on cohort, case-control, or cross-sectional studies. Observational studies also have a role in research into the benefits and harms of medical interventions [2]. Randomised trials cannot answer all important questions about a given intervention. For example, observational studies are more suitable to detect rare or late adverse effects of treatments, and are more likely to provide an indication of what is achieved in daily medical practice [3]. Research should be reported transparently so that readers can follow what was planned, what was done, what was found, and what conclusions were drawn. The credibility of research depends on a critical assessment by others of the strengths and weaknesses in study design, conduct, and analysis. Transparent reporting is also needed to judge whether and how results can be included in systematic reviews [4,5]. However, in published observational research important information is often missing or unclear. An analysis of epidemiological studies published in general medical and specialist journals found that the rationale behind the choice of potential confounding variables was often not reported [6]. Only few reports of case-control studies in psychiatry explained the methods used to identify cases and controls [7]. In a survey of longitudinal studies in stroke research, 17 of 49 articles (35%) did not specify the eligibility criteria [8]. Others have argued that without sufficient clarity of reporting, the benefits of research might be achieved more slowly [9], and that there is a need for guidance in reporting observational studies [10,11]. Recommendations on the reporting of research can improve reporting quality. The Consolidated Standards of Reporting Trials (CONSORT) Statement was developed in 1996 and revised 5 years later [12]. Many medical journals supported this initiative [13], which has helped to improve the quality of reports of randomised trials [14,15]. Similar initiatives have followed for other research areas—e.g., for the reporting of meta-analyses of randomised trials [16] or diagnostic studies [17]. We established a network of methodologists, researchers, and journal editors to develop recommendations for the reporting of observational research: the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement. Aims and Use of the STROBE Statement The STROBE Statement is a checklist of items that should be addressed in articles reporting on the 3 main study designs of analytical epidemiology: cohort, case-control, and cross-sectional studies. The intention is solely to provide guidance on how to report observational research well: these recommendations are not prescriptions for designing or conducting studies. Also, while clarity of reporting is a prerequisite to evaluation, the checklist is not an instrument to evaluate the quality of observational research. Here we present the STROBE Statement and explain how it was developed. In a detailed companion paper, the Explanation and Elaboration article [18–20], we justify the inclusion of the different checklist items and give methodological background and published examples of what we consider transparent reporting. We strongly recommend using the STROBE checklist in conjunction with the explanatory article, which is available freely on the Web sites of PLoS Medicine (http://www.plosmedicine.org/), Annals of Internal Medicine (http://www.annals.org/), and Epidemiology (http://www.epidem.com/). Development of the STROBE Statement We established the STROBE Initiative in 2004, obtained funding for a workshop and set up a Web site (http://www.strobe-statement.org/). We searched textbooks, bibliographic databases, reference lists, and personal files for relevant material, including previous recommendations, empirical studies of reporting and articles describing relevant methodological research. Because observational research makes use of many different study designs, we felt that the scope of STROBE had to be clearly defined early on. We decided to focus on the 3 study designs that are used most widely in analytical observational research: cohort, case-control, and cross-sectional studies. We organised a 2-day workshop in Bristol, UK, in September 2004. 23 individuals attended this meeting, including editorial staff from Annals of Internal Medicine, BMJ, Bulletin of the World Health Organization, International Journal of Epidemiology, JAMA, Preventive Medicine, and The Lancet, as well as epidemiologists, methodologists, statisticians, and practitioners from Europe and North America. Written contributions were sought from 10 other individuals who declared an interest in contributing to STROBE, but could not attend. Three working groups identified items deemed to be important to include in checklists for each type of study. A provisional list of items prepared in advance (available from our Web site) was used to facilitate discussions. The 3 draft checklists were then discussed by all participants and, where possible, items were revised to make them applicable to all three study designs. In a final plenary session, the group decided on the strategy for finalizing and disseminating the STROBE Statement. After the workshop we drafted a combined checklist including all three designs and made it available on our Web site. We invited participants and additional scientists and editors to comment on this draft checklist. We subsequently published 3 revisions on the Web site, and 2 summaries of comments received and changes made. During this process the coordinating group (i.e., the authors of the present paper) met on eight occasions for 1 or 2 days and held several telephone conferences to revise the checklist and to prepare the present paper and the Explanation and Elaboration paper [18–20]. The coordinating group invited 3 additional co-authors with methodological and editorial expertise to help write the Explanation and Elaboration paper, and sought feedback from more than 30 people, who are listed at the end of this paper. We allowed several weeks for comments on subsequent drafts of the paper and reminded collaborators about deadlines by e-mail. STROBE Components The STROBE Statement is a checklist of 22 items that we consider essential for good reporting of observational studies (Table 1). These items relate to the article's title and abstract (item 1), the introduction (items 2 and 3), methods (items 4–12), results (items 13–17) and discussion sections (items 18–21), and other information (item 22 on funding). 18 items are common to all three designs, while four (items 6, 12, 14, and 15) are design-specific, with different versions for all or part of the item. For some items (indicated by asterisks), information should be given separately for cases and controls in case-control studies, or exposed and unexposed groups in cohort and cross-sectional studies. Although presented here as a single checklist, separate checklists are available for each of the 3 study designs on the STROBE Web site. Table 1 The STROBE Statement—Checklist of Items That Should Be Addressed in Reports of Observational Studies Implications and Limitations The STROBE Statement was developed to assist authors when writing up analytical observational studies, to support editors and reviewers when considering such articles for publication, and to help readers when critically appraising published articles. We developed the checklist through an open process, taking into account the experience gained with previous initiatives, in particular CONSORT. We reviewed the relevant empirical evidence as well as methodological work, and subjected consecutive drafts to an extensive iterative process of consultation. The checklist presented here is thus based on input from a large number of individuals with diverse backgrounds and perspectives. The comprehensive explanatory article [18–20], which is intended for use alongside the checklist, also benefited greatly from this consultation process. Observational studies serve a wide range of purposes, on a continuum from the discovery of new findings to the confirmation or refutation of previous findings [18–20]. Some studies are essentially exploratory and raise interesting hypotheses. Others pursue clearly defined hypotheses in available data. In yet another type of studies, the collection of new data is planned carefully on the basis of an existing hypothesis. We believe the present checklist can be useful for all these studies, since the readers always need to know what was planned (and what was not), what was done, what was found, and what the results mean. We acknowledge that STROBE is currently limited to three main observational study designs. We would welcome extensions that adapt the checklist to other designs—e.g., case-crossover studies or ecological studies—and also to specific topic areas. Four extensions are now available for the CONSORT statement [21–24]. A first extension to STROBE is underway for gene-disease association studies: the STROBE Extension to Genetic Association studies (STREGA) initiative [25]. We ask those who aim to develop extensions of the STROBE Statement to contact the coordinating group first to avoid duplication of effort. The STROBE Statement should not be interpreted as an attempt to prescribe the reporting of observational research in a rigid format. The checklist items should be addressed in sufficient detail and with clarity somewhere in an article, but the order and format for presenting information depends on author preferences, journal style, and the traditions of the research field. For instance, we discuss the reporting of results under a number of separate items, while recognizing that authors might address several items within a single section of text or in a table. Also, item 22, on the source of funding and the role of funders, could be addressed in an appendix or in the methods section of the article. We do not aim at standardising reporting. Authors of randomised clinical trials were asked by an editor of a specialist medical journal to “CONSORT” their manuscripts on submission [26]. We believe that manuscripts should not be “STROBEd”, in the sense of regulating style or terminology. We encourage authors to use narrative elements, including the description of illustrative cases, to complement the essential information about their study, and to make their articles an interesting read [27]. We emphasise that the STROBE Statement was not developed as a tool for assessing the quality of published observational research. Such instruments have been developed by other groups and were the subject of a recent systematic review [28]. In the Explanation and Elaboration paper, we used several examples of good reporting from studies whose results were not confirmed in further research – the important feature was the good reporting, not whether the research was of good quality. However, if STROBE is adopted by authors and journals, issues such as confounding, bias, and generalisability could become more transparent, which might help temper the over-enthusiastic reporting of new findings in the scientific community and popular media [29], and improve the methodology of studies in the long term. Better reporting may also help to have more informed decisions about when new studies are needed, and what they should address. We did not undertake a comprehensive systematic review for each of the checklist items and sub-items, or do our own research to fill gaps in the evidence base. Further, although no one was excluded from the process, the composition of the group of contributors was influenced by existing networks and was not representative in terms of geography (it was dominated by contributors from Europe and North America) and probably was not representative in terms of research interests and disciplines. We stress that STROBE and other recommendations on the reporting of research should be seen as evolving documents that require continual assessment, refinement, and, if necessary, change. We welcome suggestions for the further dissemination of STROBE—e.g., by re-publication of the present article in specialist journals and in journals published in other languages. Groups or individuals who intend to translate the checklist to other languages should consult the coordinating group beforehand. We will revise the checklist in the future, taking into account comments, criticism, new evidence, and experience from its use. We invite readers to submit their comments via the STROBE Web site (http://www.strobe-statement.org/).
                Bookmark

                Author and article information

                Contributors
                denise.peters@med.uvm.edu , petersd20@gmail.com
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                21 April 2021
                21 April 2021
                2021
                : 18
                : 67
                Affiliations
                GRID grid.59062.38, ISNI 0000 0004 1936 7689, Department of Rehabilitation and Movement Science, , University of Vermont, ; 106 Carrigan Dr., Rowell 310, Burlington, VT USA
                Author information
                http://orcid.org/0000-0003-2066-4624
                Article
                863
                10.1186/s12984-021-00863-x
                8059183
                33882948
                08fddf6d-3155-4878-8084-cfd1c67e1247
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 25 June 2020
                : 7 April 2021
                Funding
                Funded by: National Institute of General Medical Sciences (US)
                Award ID: P20GM135007
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                Neurosciences
                stroke,wearable,gait,mobility,rehabilitation,sensors
                Neurosciences
                stroke, wearable, gait, mobility, rehabilitation, sensors

                Comments

                Comment on this article

                scite_

                Similar content217

                Cited by14

                Most referenced authors1,378