Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction of a prognostic model for gastric cancer based on immune infiltration and microenvironment, and exploration of MEF2C gene function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c ( MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.

          Methods

          Transcriptome sequence data of GC was obtained from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO) and PRJEB25780 cohort for subsequent immune infiltration analysis, immune microenvironment analysis, consensus clustering analysis and feature selection for definition and classification of gene M and N. Principal component analysis (PCA) modeling was performed based on gene M and N for the calculation of immune checkpoint inhibitor (ICI) Score. Then, a Nomogram was constructed and evaluated for predicting the prognosis of GC patients, based on univariate and multivariate Cox regression. Functional enrichment analysis was performed to initially investigate the potential biological mechanisms. Through Genomics of Drug Sensitivity in Cancer (GDSC) dataset, the estimated IC 50 values of several chemotherapeutic drugs were calculated. Tumor-related transcription factors (TFs) were retrieved from the Cistrome Cancer database and utilized our model to screen these TFs, and weighted correlation network analysis (WGCNA) was performed to identify transcription factors strongly associated with immunotherapy in GC. Finally, 10 patients with advanced GC were enrolled from Sun Yat-sen University Cancer Center, including paired tumor tissues, paracancerous tissues and peritoneal metastases, for preparing sequencing library, in order to perform external validation.

          Results

          Lower ICI Score was correlated with improved prognosis in both the training and validation cohorts. First, lower mutant-allele tumor heterogeneity (MATH) was associated with lower ICI Score, and those GC patients with lower MATH and lower ICI Score had the best prognosis. Second, regardless of the T or N staging, the low ICI Score group had significantly higher overall survival (OS) compared to the high ICI Score group. For its mechanisms, consistently, for Camptothecin, Doxorubicin, Mitomycin, Docetaxel, Cisplatin, Vinblastine, Sorafenib and Paclitaxel, all of the IC 50 values were significantly lower in the low ICI Score group compared to the high ICI Score group. As a result, based on univariate and multivariate Cox regression, ICI Score was considered to be an independent prognostic factor for GC. And our Nomogram showed good agreement between predicted and actual probabilities. Based on CIBERSORT deconvolution analysis, there was difference of immune cell composition found between high and low ICI Score groups, probably affecting the efficacy of immunotherapy. Then, MEF2C, a tumor-related transcription factor, was screened out by WGCNA analysis. Higher MEF2C expression is significantly correlated with a worse OS. Moreover, its higher expression is also negatively correlated with tumor mutation burden (TMB) and microsatellite instability (MSI), but positively correlated with several immunosuppressive molecules, indicating MEF2C may exert its influence on tumor development by upregulating immunosuppressive molecules. Finally, based on transcriptome sequencing data on 10 paired tumor tissues from Sun Yat-sen University Cancer Center, MEF2C expression was significantly lower in paracancerous tissues compared to tumor tissues and peritoneal metastases, and it was also lower in tumor tissues compared to peritoneal metastases, indicating a potential positive association between MEF2C expression and tumor invasiveness.

          Conclusions

          Our prognostic model can effectively predict outcomes and facilitate stratification GC patients, offering valuable insights for clinical decision-making. The identified transcription factor MEF2C can serve as a biomarker for assessing the efficacy of immunotherapy for GC.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12920-024-02082-4.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            clusterProfiler: an R package for comparing biological themes among gene clusters.

            Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis. Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters. The analysis module and visualization module were combined into a reusable workflow. Currently, clusterProfiler supports three species, including humans, mice, and yeast. Methods provided in this package can be easily extended to other species and ontologies. The clusterProfiler package is released under Artistic-2.0 License within Bioconductor project. The source code and vignette are freely available at http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              limma powers differential expression analyses for RNA-sequencing and microarray studies

              limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
                Bookmark

                Author and article information

                Contributors
                yuanzhiping9@126.com
                Journal
                BMC Med Genomics
                BMC Med Genomics
                BMC Medical Genomics
                BioMed Central (London )
                1755-8794
                14 January 2025
                14 January 2025
                2025
                : 18
                : 13
                Affiliations
                [1 ]Department of Oncology, The First People’s Hospital of Yibin, ( https://ror.org/02f8z2f57) No.65, Wenxing Street, Cuiping District, Yibin, 644000 China
                [2 ]The First Hospital of Jilin University, ( https://ror.org/034haf133) Changchun, 130000 China
                [3 ]China-Japan Union Hospital of Jilin University, ( https://ror.org/00js3aw79) Changchun, 130000 China
                [4 ]Departments of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, ( https://ror.org/02drdmm93) Beijing, China
                [5 ]Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, ( https://ror.org/0064kty71) Guangzhou, 510060 China
                [6 ]Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, ( https://ror.org/0064kty71) Guangzhou, 510060 China
                Article
                2082
                10.1186/s12920-024-02082-4
                11734330
                39810215
                08fb4cf1-1a4b-4e4b-a868-61f2d317cb17
                © The Author(s) 2025

                Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

                History
                : 10 November 2023
                : 31 December 2024
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2025

                Genetics
                gastric cancer (gc),prognostic model,transcriptome sequencing,immune microenvironment,immunotherapy,transcription factor (tf),myocyte enhancer factor 2c (mef2c),biomarker

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content188

                Most referenced authors1,774