50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wnt5a Is Strongly Expressed at the Leading Edge in Non-Melanoma Skin Cancer, Forming Active Gradients, while Canonical Wnt Signalling Is Repressed

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wnt5a is one of the so-called non-canonical Wnt ligands which do not act through β-catenin. In normal development, Wnt5a is secreted and directs the migration of target cells along concentration gradients. The effect of Wnt5a on target cells is regulated by many factors, including the expression level of inhibitors and receptors. Dysregulated Wnt5a signalling facilitates invasion of multiple tumor types into adjacent tissue. However, the expression and distribution of Wnt5a in cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as the effect of Wnt5a on keratinocyte migration has not been studied in detail to date. We here report that Wnt5a is upregulated in SCC and BCC and localised to the leading edge of tumors, as well as tumor-associated fibroblasts. The Wnt5a-triggered bundling of its receptor Fzd3 provides evidence of Wnt5a concentration gradients projecting into the tumor. In vitro migration assays show that Wnt5a concentration gradients determine its effect on keratinoctye migration: While chemotactic migration is inhibited by Wnt5a present in homogenous concentrations, it is enhanced in the presence of a Wnt5a gradient. Expression profiling of the Wnt pathway shows that the upregulation of Wnt5a in SCC is coupled to repression of canonical Wnt signalling. This is confirmed by immunohistochemistry showing lack of nuclear β-catenin, as well as absent accumulation of Axin2. Since both types of Wnt signalling act mutually antogonistically at multiple levels, the concurrent repression of canonical Wnt signalling suggests hyper-active Wnt5a signal transduction. Significantly, this combination of gene dysregulation is not observed in the benign hyperproliferative inflammatory skin disease psoriasis. Collectively, our data strongly suggest that Wnt5a signalling contributes to tissue invasion by non-melanoma skin cancer.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease.

          The secreted Frizzled-related proteins (SFRPs) are a family of soluble proteins that are structurally related to Frizzled (Fz) proteins, the serpentine receptors that mediate the extensively used cell-cell communication pathway involving Wnt signalling. Because of their homology with the Wnt-binding domain on the Fz receptors, SFRPs were immediately characterised as antagonists that bind to Wnt proteins to prevent signal activation. Since these initial studies, interest in the family of SFRPs has grown progressively, offering new perspectives on their function and mechanism of action in both development and disease. These studies indicate that SFRPs are not merely Wnt-binding proteins, but can also antagonise one another's activity, bind to Fz receptors and influence axon guidance, interfere with BMP signalling by acting as proteinase inhibitors, and interact with other receptors or matrix molecules. Furthermore, their expression is altered in different types of cancers, bone pathologies, retinal degeneration and hypophosphatemic diseases, indicating that their activity is fundamental for tissue homeostasis. Here we review some of the debated aspects of SFRP-Wnt interactions and discuss the new and emerging roles of SFRPs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma.

            Gene expression profiling identified human melanoma cells demonstrating increased cell motility and invasiveness. The gene WNT5A best determined in vitro invasive behavior. Melanoma cells were transfected with vectors constitutively overexpressing Wnt5a. Consistent changes included actin reorganization and increased cell adhesion. No increase in beta-catenin expression or nuclear translocation was observed. There was, however, a dramatic increase in activated PKC. In direct correlation with Wnt5a expression and PKC activation, there was an increase in melanoma cell invasion. Blocking this pathway using antibodies to Frizzled-5, the receptor for Wnt5a, inhibited PKC activity and cellular invasion. Furthermore, Wnt5a expression in human melanoma biopsies directly correlated to increasing tumor grade. These observations support a role for Wnt5a in human melanoma progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors.

              Wnt ligands signal through β-catenin and are critically involved in cell fate determination and stem/progenitor self-renewal. Wnts also signal through β-catenin-independent or noncanonical pathways that regulate crucial events during embryonic development. The mechanism of noncanonical receptor activation and how Wnts trigger canonical as opposed to noncanonical signaling have yet to be elucidated. We demonstrate here that prototype canonical Wnt3a and noncanonical Wnt5a ligands specifically trigger completely unrelated endogenous coreceptors-LRP5/6 and Ror1/2, respectively-through a common mechanism that involves their Wnt-dependent coupling to the Frizzled (Fzd) coreceptor and recruitment of shared components, including dishevelled (Dvl), axin, and glycogen synthase kinase 3 (GSK3). We identify Ror2 Ser 864 as a critical residue phosphorylated by GSK3 and required for noncanonical receptor activation by Wnt5a, analogous to the priming phosphorylation of low-density receptor-related protein 6 (LRP6) in response to Wnt3a. Furthermore, this mechanism is independent of Ror2 receptor Tyr kinase functions. Consistent with this model of Wnt receptor activation, we provide evidence that canonical and noncanonical Wnts exert reciprocal pathway inhibition at the cell surface by competition for Fzd binding. Thus, different Wnts, through their specific coupling and phosphorylation of unrelated coreceptors, activate completely distinct signaling pathways.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                22 February 2012
                : 7
                : 2
                : e31827
                Affiliations
                [1 ]Medical Research Institute, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
                [2 ]Department of Dermatology, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
                [3 ]Cancer Research UK Cancer Centre Dundee, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
                [4 ]Education Division, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
                [5 ]Tayside Tissue Bank, College of Medicine, Dentistry, and Nursing, University of Dundee, Dundee, Scotland
                Ohio State University Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: C. Pourreyron JF. Performed the experiments: C. Pourreyron JF LR KM. Analyzed the data: C. Pourreyron JF LR APS AP C. Proby CF. Wrote the paper: C. Pourreyron JF.

                Article
                PONE-D-11-20957
                10.1371/journal.pone.0031827
                3285195
                22384081
                08fab5fe-d527-4114-bc65-3341a3a27186
                Pourreyron et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 October 2011
                : 12 January 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Medicine
                Dermatology
                Skin Neoplasms
                Oncology
                Basic Cancer Research
                Cancers and Neoplasms

                Uncategorized
                Uncategorized

                Comments

                Comment on this article