12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cone-Beam Computed Tomography in Orthodontics

      review-article
      Dentistry Journal
      MDPI
      cone-beam CT, CBCT in orthodontics, CBCT review, orthodontic advanced imaging

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unlike patients receiving implants or endodontic treatment, most orthodontic patients are children who are particularly sensitive to ionizing radiation. Cone-beam computed tomography (CBCT) carries risks and benefits in orthodontics. The principal risks and limitations include ionizing radiation, the presence of artifacts, higher cost, limited accessibility, and the need for additional training. However, this imaging modality has several recognized indications in orthodontics, such as the assessment of impacted and ectopic teeth, assessment of pharyngeal airway, assessment of mini-implant sites, evaluation of craniofacial abnormalities, evaluation of sinus anatomy or pathology, evaluation of root resorption, evaluation of the cortical bone plate, and orthognathic surgery planning and evaluation. CBCT is particularly justified when it brings a benefit to the patient or changes the outcome of the treatment when compared with conventional imaging techniques. Therefore, CBCT should be considered for clinical orthodontics for selected patients. Prescription of CBCT requires judicious and sound clinical judgment. The central question of this narrative review article is: when does CBCT add value to the practice of orthodontics? To answer this question, this article presents discussion on radiation dosage of CBCT and other imaging techniques used in orthodontics, limitations of CBCT in orthodontics, justifying the use of CBCT in orthodontics, and the benefits and evidence-based indications of CBCT in orthodontics. This review summarizes the central themes and topics in the literature regarding CBCT in orthodontics and presents ten orthodontic cases in which CBCT proved to be valuable.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Estimated risks of radiation-induced fatal cancer from pediatric CT.

          In light of the rapidly increasing frequency of pediatric CT examinations, the purpose of our study was to assess the lifetime cancer mortality risks attributable to radiation from pediatric CT. Organ doses as a function of age-at-diagnosis were estimated for common CT examinations, and estimated attributable lifetime cancer mortality risks (per unit dose) for different organ sites were applied. Standard models that assume a linear extrapolation of risks from intermediate to low doses were applied. On the basis of current standard practice, the same exposures (milliampere-seconds) were assumed, independent of age. The larger doses and increased lifetime radiation risks in children produce a sharp increase, relative to adults, in estimated risk from CT. Estimated lifetime cancer mortality risks attributable to the radiation exposure from a CT in a 1-year-old are 0.18% (abdominal) and 0.07% (head)-an order of magnitude higher than for adults-although those figures still represent a small increase in cancer mortality over the natrual background rate. In the United States, of approximately 600,000 abdominal and head CT examinations annually performed in children under the age of 15 years, a rough estimate is that 500 of these individuals might ultimately die from cancer attributable to the CT radiation. The best available risk estimates suggest that pediatric CT will result in significantly increased lifetime radiation risk over adult CT, both because of the increased dose per milliampere-second, and the increased lifetime risk per unit dose. Lower milliampere-second settings can be used for children without significant loss of information. Although the risk-benefit balance is still strongly tilted toward benefit, because the frequency of pediatric CT examinations is rapidly increasing, estimates that quantitative lifetime radiation risks for children undergoing CT are not negligible may stimulate more active reduction of CT exposure settings in pediatric patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer risks attributable to low doses of ionizing radiation: assessing what we really know.

            High doses of ionizing radiation clearly produce deleterious consequences in humans, including, but not exclusively, cancer induction. At very low radiation doses the situation is much less clear, but the risks of low-dose radiation are of societal importance in relation to issues as varied as screening tests for cancer, the future of nuclear power, occupational radiation exposure, frequent-flyer risks, manned space exploration, and radiological terrorism. We review the difficulties involved in quantifying the risks of low-dose radiation and address two specific questions. First, what is the lowest dose of x- or gamma-radiation for which good evidence exists of increased cancer risks in humans? The epidemiological data suggest that it is approximately 10-50 mSv for an acute exposure and approximately 50-100 mSv for a protracted exposure. Second, what is the most appropriate way to extrapolate such cancer risk estimates to still lower doses? Given that it is supported by experimentally grounded, quantifiable, biophysical arguments, a linear extrapolation of cancer risks from intermediate to very low doses currently appears to be the most appropriate methodology. This linearity assumption is not necessarily the most conservative approach, and it is likely that it will result in an underestimate of some radiation-induced cancer risks and an overestimate of others.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exposure to low-dose ionizing radiation from medical imaging procedures.

              The growing use of imaging procedures in the United States has raised concerns about exposure to low-dose ionizing radiation in the general population. We identified 952,420 nonelderly adults (between 18 and 64 years of age) in five health care markets across the United States between January 1, 2005, and December 31, 2007. Utilization data were used to estimate cumulative effective doses of radiation from imaging procedures and to calculate population-based rates of exposure, with annual effective doses defined as low ( 3 to 20 mSv), high (> 20 to 50 mSv), or very high (> 50 mSv). During the study period, 655,613 enrollees (68.8%) underwent at least one imaging procedure associated with radiation exposure. The mean (+/-SD) cumulative effective dose from imaging procedures was 2.4+/-6.0 mSv per enrollee per year; however, a wide distribution was noted, with a median effective dose of 0.1 mSv per enrollee per year (interquartile range, 0.0 to 1.7). Overall, moderate effective doses of radiation were incurred in 193.8 enrollees per 1000 per year, whereas high and very high doses were incurred in 18.6 and 1.9 enrollees per 1000 per year, respectively. In general, cumulative effective doses of radiation from imaging procedures increased with advancing age and were higher in women than in men. Computed tomographic and nuclear imaging accounted for 75.4% of the cumulative effective dose, with 81.8% of the total administered in outpatient settings. Imaging procedures are an important source of exposure to ionizing radiation in the United States and can result in high cumulative effective doses of radiation. 2009 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                Dent J (Basel)
                Dent J (Basel)
                dentistry
                Dentistry Journal
                MDPI
                2304-6767
                02 September 2019
                September 2019
                : 7
                : 3
                : 89
                Affiliations
                Department of Orthodontics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; aabdelkarim@ 123456umc.edu
                Article
                dentistry-07-00089
                10.3390/dj7030089
                6784482
                31480667
                08e798a2-f223-4524-b9bc-80b349c30f6c
                © 2019 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 June 2019
                : 09 August 2019
                Categories
                Review

                cone-beam ct,cbct in orthodontics,cbct review,orthodontic advanced imaging

                Comments

                Comment on this article