17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic traumatic encephalopathy in a former Australian rules football player diagnosed with Alzheimer’s disease

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To the Editor: The first case report of chronic traumatic encephalopathy (CTE) in a National Football League player in 2005 [9] opened the floodgates for the identification of CTE in American football. CTE is now reported in ex-players of other contact sports, including ice hockey, soccer, rugby union, and most recently in Australian rugby league [2]. To date, repetitive head injury remains the only known risk factor for the development of CTE [3]. Here we describe the first case of CTE in Australian rules football (ARF), the most popular contact sport in Australia. The decedent was a male in his 9th decade who had played more than 350 first-grade matches of ARF over 19 years. At age 64 he was diagnosed with Alzheimer’s disease (AD), with accompanying personality change, depression and anger/aggression issues around this time. He had been diagnosed with REM sleep behaviour disorder several years prior to his presumptive AD diagnosis. His cognitive issues were dominated by memory loss, which was slowly progressive until a distinct acceleration in the last ~ 5 years of life. Mild Parkinsonian features of uncertain aetiology were identified several years after his AD diagnosis, possibly related to low-dose antipsychotic medication. He also had intercurrent ischaemic heart disease, hypercholesterolaemia, and hypertension, all of which were well managed. He did not use alcohol, tobacco, or illicit drugs. Table 1 summarises the relevant neuropathology. There was mild-moderate frontal and temporal lobe atrophy with ex-vacuo ventriculomegaly (lateral and third ventricles), mild uncomplicated atheroma in the basal vasculature, and pallor of the substantia nigra. Phosphorylated Tau immunoreactivity (pTau) was present in many grey matter regions. Neocortical pTau was markedly concentrated in an irregular perivascular distribution at sulcal depths in the soma and processes of both neurons and astrocytes: this is the defining lesion of CTE [8] (Fig. 1a, b). Twelve CTE foci were present within nine frontal lobe blocks, and four foci in four temporal lobe blocks. In the temporal and insular cortices there was also dense involvement of superficial layers (layers II-III) (Fig. 1c), consisting of pretangle and tangle pTau, and some ghost tangles. This pattern of pTau deposition, commonly seen in severe CTE, is distinct from the typical pTau deposition in AD (Fig. 1d). Neuronal pTau was composed of both 3R and 4R isoforms, while astrocytic pTau was predominantly 4R. Table 1 Summary of neuropathology findings Tau pathology Depths of cortical sulci, perivascular neuronal, astrocytic, neuritic frontal +++ temporal ++ parietal, occipital - Prominent superficial neocortical layers neuronal, astrocytic, neuritic temporal +++ insular +++ frontal + parietal, occipital - Hippocampus neuronal CA2, CA4 +++ CA3 ++ DG + CA1 sclerosis (astrocytic) + Amygdala neuronal, neuritic +++ Striatum, Lentiform nuclei neuronal, neuritic + Thalamus neuronal, neuritic + Hypothalamus incl. Mammillary body neuronal, neuritic +++ Midbrain neuronal, neuritic substantia nigra +++ median raphe +++ tectum ++ Pons locus coeruleus + abducens nucleus + Medulla – Cerebellum – Subpial & periventricular ARTAG present Ghost tangles CA1, entorhinal, superficial temporal, amygdala pTDP-43 pathology NCI, neuritic amygdala ++ hippocampus + superficial temporal ++ depths of frontal sulci + Other pathology Vascular disease, arteriolosclerosis Vascular disease, atherosclerosis basal ganglia +++ subcortical white matter +++ basal vessels + Beta-A4 (amyloid) Thaal 4 (A3) CERAD score C2 Alpha-synuclein absent Diagnosis CTE Stage III AD-NC (A3, B2, C2) CA cornu ammonis, DG dentate gyrus, NCI neuronal cytoplasmic inclusions, AD-NC Alzheimer’s Disease neuropathologic change, ARTAG aging-related tau astrogliopathy Fig. 1 Immunohistochemical findings. a, b pTau (clone AT8, 1:800 dilution) immunoreactivity concentrated at the depths of a cortical sulcus in the superior frontal cortex (Brodmann area 8). pTau is found in the soma and processes of both neurons and astrocytes in an irregular distribution concentrated around blood vessels: the defining lesion of CTE. The boxed area in (a) is represented at high power in (b). c pTau staining of anterior superior temporal lobe (Brodmann area 38), showing dense immunoreactivity of both neurons and astrocytes concentrated in superficial cortical layers (layers II-III). This superficial pTau is more evenly distributed throughout temporal cortex, with only occasional denser foci at sulcal depths (four foci across four blocks of anterior temporal lobe). pTau is also present in deeper cortical layers as irregular/patchy clumps of mixed neuronal and astrocytic staining. d Inferior temporal gyrus from another individual (77yo ex-ARF player with AD but no CTE), showing a pattern of pTau pathology distinct to that of CTE, with neuronal pTau staining concentrated in deeper cortical layers and dense neuritic staining. e Widespread pTau staining (as both globose tangles and pretangle pathology) in neurons of the substantia nigra, with accompanying neuritic pathology. There was accompanying moderate neuronal loss, pigment incontinence and gliosis. f pTDP-43 (clone 1D3, 1:500 dilution) staining of temporal lobe in the same superficial cortical layers depicted in (c), showing positive neuronal cytoplasmic inclusions and short neurites. g Beta-amyloid (betaA4 clone 6F/3D, 1:50 dilution) immunoreactivity in superior frontal cortex (Brodmann area 8). The boxed area is represented at high power in the inset. All immunohistochemistry performed on 4 μm sections from standard-sized blocks of formalin-fixed (10% neutral buffered formalin), paraffin-embedded tissue on a Leica BOND-MAX™ autostainer using the Leica BOND Polymer Refine detection system as per the manufacturer’s recommendations Hippocampal sclerosis was present, with some ghost tangles, gliosis, and heavy pTau involvement. Widespread neuronal and neuritic pTau was also present in amygdala, medial hypothalamic nuclei, mammillary body, nucleus basalis, substantia nigra (Fig. 1e), raphe nuclei and colliculi. Subpial and subependymal pTau in thorn-shaped astrocytes was present, consistent with aging-related tau astrogliopathy (ARTAG), most prominent in the temporal lobe. Phosphorylated TDP-43 was present as neuronal cytoplasmic inclusions and short neurites, and was colocalised with regions of severe CTE pathology (Fig. 1f), a common finding in CTE [8]. Beta-amyloid and neuritic plaques were seen, corresponding to Thaal phase 4 (A3; Fig. 1g), and CERAD score of C2. While pTau pathology was in the typical distribution of CTE rather than AD, assessing all neurofibrillary tangle pathology gave a Braak stage of IV (B2). Together this equated to intermediate AD-neuropathologic change (A3,B2,C2) [6]. Immunohistochemistry for alpha-synuclein was negative. Severe arteriolosclerosis was present in basal ganglia and white matter. Rarefaction and gliosis in subcortical white matter was generally mild-moderate, while in the anterior commissure and external capsule it was severe. Axonal pTau was moderate in these above two tracts, and mild elsewhere, and was seen as immunoreactive neurites and axonal varicosities. Beta-amyloid precursor protein was absent from anterior commissure and external capsule, and present in internal capsule in a pattern consistent with agonal changes only. Taken together, these findings demonstrate severe (Stage III) CTE. This is the first confirmed case in ARF. CTE was associated with early-onset dementia, with neuropsychological features commonly described in pathologically confirmed CTE cases from other sports. Typical CTE pathology in this case was accompanied by intermediate AD-neuropathologic change, and severe small vessel disease. ARF is the most popular contact sport in Australia, with a player base of more than 1.5 million, and a significant (30%) female representation. ARF is characterized by its fast-paced physicality: it involves running at speed, frequent jumping, and high-impact landing. With 18 players per side high-force collisions are commonplace, and can occur in any direction, on the ground or in the air. Thus unsurprisingly, ARF has a high injury and concussion rate [7], and the unique nature of the game places players at risk of head injury from multiple and complex mechanisms, distinct from those of the rugby codes. The limited available evidence on long-term neurological outcomes of ARF players suggests that, like ex-athletes of other contact sports, they too are predisposed to develop persisting deficits in motor control and cognition [4, 10]. There are no criteria for distinguishing AD-associated from CTE-associated pTau pathology when there is intercurrent disease. The identification of conformational differences in the β-helix region of pTau in CTE versus AD [5] suggests that these are two distinct pathologies, but currently all neurofibrillary tangle pathology in a CTE case is assessed to derive a Braak stage for AD. This ‘double-counting’ of pTau is likely to overestimate the severity of co-occurring AD in CTE, particularly in older individuals such as described here. Development of conformation-specific antibodies specific for CTE-pTau would greatly assist in distinguishing these two diseases. This case represents only the second ARF player brain donated to the recently established Australian Sports Brain Bank [1], and the first to be diagnosed with CTE. While we can make no claims of CTE incidence in ARF based on this index case, the distinctive and severe pTau pathology is something we have not encountered in our busy clinical practice outside of ex-contact sports players [2]. That it exists at all should serve as a call to action to recognise and research CTE, and the very clear association with repetitive head injury. Claims of a lack of demonstrated ‘causality’ are unhelpful, and arguably irrelevant when assessing a public and occupational health issue such as CTE.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic traumatic encephalopathy in a National Football League player.

          We present the results of the autopsy of a retired professional football player that revealed neuropathological changes consistent with long-term repetitive concussive brain injury. This case draws attention to the need for further studies in the cohort of retired National Football League players to elucidate the neuropathological sequelae of repeated mild traumatic brain injury in professional football. The patient's premortem medical history included symptoms of cognitive impairment, a mood disorder, and parkinsonian symptoms. There was no family history of Alzheimer's disease or any other head trauma outside football. A complete autopsy with a comprehensive neuropathological examination was performed on the retired National Football League player approximately 12 years after retirement. He died suddenly as a result of coronary atherosclerotic disease. Studies included determination of apolipoprotein E genotype. Autopsy confirmed the presence of coronary atherosclerotic disease with dilated cardiomyopathy. The brain demonstrated no cortical atrophy, cortical contusion, hemorrhage, or infarcts. The substantia nigra revealed mild pallor with mild dropout of pigmented neurons. There was mild neuronal dropout in the frontal, parietal, and temporal neocortex. Chronic traumatic encephalopathy was evident with many diffuse amyloid plaques as well as sparse neurofibrillary tangles and tau-positive neuritic threads in neocortical areas. There were no neurofibrillary tangles or neuropil threads in the hippocampus or entorhinal cortex. Lewy bodies were absent. The apolipoprotein E genotype was E3/E3. This case highlights potential long-term neurodegenerative outcomes in retired professional National Football League players subjected to repeated mild traumatic brain injury. The prevalence and pathoetiological mechanisms of these possible adverse long-term outcomes and their relation to duration of years of playing football have not been sufficiently studied. We recommend comprehensive clinical and forensic approaches to understand and further elucidate this emergent professional sport hazard.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            White matter capillaries in vascular and neurodegenerative dementias

            Previous studies suggest white matter (WM) integrity is vulnerable to chronic hypoperfusion during brain ageing. We assessed ~ 0.7 million capillary profiles in the frontal lobe WM across several dementias comprising Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease with dementia, vascular dementia, mixed dementias, post-stroke dementia as well as post-stroke no dementia and similar age ageing and young controls without significant brain pathology. Standard histopathological methods were used to determine microvascular pathology and capillary width and densities in 153 subjects using markers of the basement membrane (collagen IV; COL4) and endothelium (glucose transporter-1; GLUT-1). Variable microvascular pathology including coiled, tortuous, collapsed and degenerated capillaries as well as occasional microaneurysms was present in all dementias. As expected, WM microvascular densities were 20–49% lower than in the overlying cortex. This differential in density between WM and cortex was clearly demonstrated by COL4, which was highly correlated with GLUT-1 densities (Spearman’s rho = 0.79, P = 0.000). WM COL4 immunopositive microvascular densities were decreased by ~ 18% across the neurodegenerative dementias. However, we found WM COL4 densities were increased by ~ 57% in post-stroke dementia versus ageing and young controls and other dementias. Using three different methods to measure capillary diameters, we found WM capillaries to be significantly wider by 19–45% compared to those in overlying neocortex apparent with both COL4 and GLUT-1. Remarkably, WM capillary widths were increased by ~ 20% across all dementias compared to ageing and young controls (P < 0.01). We also noted mean WM pathology scores incorporating myelin loss, arteriolosclerosis and perivascular spacing were correlated with COL4 immunopositive capillary widths (Pearson’s r = 0.71, P = 0.032). Our key finding indicates that WM capillaries are wider compared to those in the overlying neocortex in controls but they dilate further during dementia pathogenesis. We suggest capillaries undergo restructuring in the deep WM in different dementias. This reflects compensatory changes to retain WM perfusion and integrity during hypoperfusive states in ageing-related dementias.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The long-term effects of sports concussion on retired Australian football players: a study using transcranial magnetic stimulation.

              This study investigated corticomotor excitability and inhibition, cognitive functioning, and fine motor dexterity in retired elite and amateur Australian football (AF) players who had sustained concussions during their playing careers. Forty male AF players who played at the elite level (n=20; mean age 49.7±5.7 years) or amateur level (n=20; mean age 48.4±6.9 years), and had sustained on average 3.2 concussions 21.9 years previously, were compared with 20 healthy age-matched male controls (mean age 47.56±6.85 years). All participants completed assessments of fine dexterity, visuomotor reaction time, spatial working memory (SWM), and associative learning (AL). Transcranial magnetic stimulation (TMS) was used to measure corticospinal excitability: stimulus-response (SR) curves and motor evoked potential (MEP) 125% of active motor threshold (aMT); and intracortical inhibition: cortical silent period (cSP), short-interval intracortical inhibition (SICI), and long-interval intracortical inhibition (LICI). Healthy participants performed better in dexterity (p=0.003), reaction (p=0.003), and movement time (p=0.037) than did both AF groups. Differences between AF groups were found in AL (p=0.027) and SWM (p=0.024). TMS measures revealed that both AF groups showed reduced cSP duration at 125% aMT (p>0.001) and differences in SR curves (p>0.001) than did healthy controls. Similarly, SICI (p=0.012) and LICI (p=0.009) were reduced in both AF groups compared with controls. Regression analyses revealed a significant contribution to differences in motor outcomes with the three measures of intracortical inhibition. The measures of inhibition differed, however, in terms of which performance measure they had a significant and unique predictive relationship with, reflecting the variety of participant concussion injuries. This study is the first to demonstrate differences in motor control and intracortical inhibition in AF players who had sustained concussions during their playing career two decades previously.
                Bookmark

                Author and article information

                Contributors
                michael.buckland@sydney.edu.au
                Journal
                Acta Neuropathol Commun
                Acta Neuropathol Commun
                Acta Neuropathologica Communications
                BioMed Central (London )
                2051-5960
                26 February 2020
                26 February 2020
                2020
                : 8
                : 23
                Affiliations
                [1 ]GRID grid.1018.8, ISNI 0000 0001 2342 0938, College of Science, Health and Engineering, , La Trobe University, ; Bundoora, VIC 3086 Australia
                [2 ]GRID grid.413249.9, ISNI 0000 0004 0385 0051, Department of Neuropathology, , Royal Prince Alfred Hospital, ; Camperdown, NSW 2050 Australia
                [3 ]GRID grid.1013.3, ISNI 0000 0004 1936 834X, Brain & Mind Centre, , University of Sydney, ; Camperdown, NSW 2006 Australia
                [4 ]GRID grid.1004.5, ISNI 0000 0001 2158 5405, Macquarie University, ; Macquarie Park, NSW 2109 Australia
                Author information
                http://orcid.org/0000-0003-4755-6471
                Article
                895
                10.1186/s40478-020-0895-z
                7043040
                32098626
                08e78414-8f18-4dbe-b3ae-12ec50f6052f
                © The Author(s). 2020

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 January 2020
                : 5 February 2020
                Categories
                Letter to the Editor
                Custom metadata
                © The Author(s) 2020

                chronic traumatic encephalopathy,traumatic brain injury,australian football league,concussion,repetitive head injury,dementia,neurodegeneration,tau,public health,occupational health

                Comments

                Comment on this article