52
views
0
recommends
+1 Recommend
1 collections
    1
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Non-Dicer RNase III and Four Other Novel Factors Required for RNAi-Mediated Transposon Suppression in the Human Pathogenic Yeast Cryptococcus neoformans

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human pathogenic yeast Cryptococcus neoformans silences transposable elements using endo-siRNAs and an Argonaute, Ago1. Endo-siRNAs production requires the RNA-dependent RNA polymerase, Rdp1, and two partially redundant Dicer enzymes, Dcr1 and Dcr2, but is independent of histone H3 lysine 9 methylation. We describe here an insertional mutagenesis screen for factors required to suppress the mobilization of the C. neoformans HARBINGER family DNA transposon HAR1. Validation experiments uncovered five novel genes ( RDE1-5) required for HAR1 suppression and global production of suppressive endo-siRNAs. The RDE genes do not impact transcript levels, suggesting the endo-siRNAs do not act by impacting target transcript synthesis or turnover. RDE3 encodes a non-Dicer RNase III related to S. cerevisiae Rnt1, RDE4 encodes a predicted terminal nucleotidyltransferase, while RDE5 has no strongly predicted encoded domains. Affinity purification-mass spectrometry studies suggest that Rde3 and Rde5 are physically associated. RDE1 encodes a G-patch protein homologous to the S. cerevisiae Sqs1/ Pfa1, a nucleolar protein that directly activates the essential helicase Prp43 during rRNA biogenesis. Rde1 copurifies Rde2, another novel protein obtained in the screen, as well as Ago1, a homolog of Prp43, and numerous predicted nucleolar proteins. We also describe the isolation of conditional alleles of PRP43, which are defective in RNAi. This work reveals unanticipated requirements for a non-Dicer RNase III and presumptive nucleolar factors for endo-siRNA biogenesis and transposon mobilization suppression in C. neoformans.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Uridylation by TUT4 and TUT7 marks mRNA for degradation.

          Uridylation occurs pervasively on mRNAs, yet its mechanism and significance remain unknown. By applying TAIL-seq, we identify TUT4 and TUT7 (TUT4/7), also known as ZCCHC11 and ZCCHC6, respectively, as mRNA uridylation enzymes. Uridylation readily occurs on deadenylated mRNAs in cells. Consistently, purified TUT4/7 selectively recognize and uridylate RNAs with short A-tails (less than ∼ 25 nt) in vitro. PABPC1 antagonizes uridylation of polyadenylated mRNAs, contributing to the specificity for short A-tails. In cells depleted of TUT4/7, the vast majority of mRNAs lose the oligo-U-tails, and their half-lives are extended. Suppression of mRNA decay factors leads to the accumulation of oligo-uridylated mRNAs. In line with this, microRNA induces uridylation of its targets, and TUT4/7 are required for enhanced decay of microRNA targets. Our study explains the mechanism underlying selective uridylation of deadenylated mRNAs and demonstrates a fundamental role of oligo-U-tail as a molecular mark for global mRNA decay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi.

            Transposable elements are stretches of DNA that can move and multiply within the genome of an organism. The Caenorhabditis elegans genome contains multiple Tc1 transposons that jump in somatic cells, but are silenced in the germ line. Many mutants that have lost this silencing have also lost the ability to execute RNA interference (RNAi), a process whereby genes are suppressed by exposure to homologous double-stranded RNA (dsRNA). Here we show how RNAi causes transposon silencing in the nematode germ line. We find evidence for transposon-derived dsRNAs, in particular to the terminal inverted repeats, and show that these RNAs may derive from read-through transcription of entire transposable elements. Small interfering RNAs of Tc1 were detected. When a germline-expressed reporter gene is fused to a stretch of Tc1 sequence, this transgene is silenced in a manner dependent on functional mutator genes (mut-7, mut-16 and pk732). These results indicate that RNAi surveillance is triggered by fortuitous read-through transcription of dispersed Tc1 copies, which can form dsRNA as a result of 'snap-back' of the terminal inverted repeats. RNAi mediated by this dsRNA silences transposase gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transposable elements are found in a large number of human protein-coding genes.

              To study the genome-wide impact of transposable elements (TEs) on the evolution of protein-coding regions, we examined 13 799 human genes and found 533 (approximately 4%) cases of TEs within protein-coding regions. The majority of these TEs (approximately 89.5%) reside within 'introns' and were recruited into coding regions as novel exons. We found that TE integration often has an effect on gene function. In particular, there were two mouse genes whose coding regions consist largely of TEs, suggesting that TE insertion might create new genes. Thus, there is increasing evidence for an important role of TEs in gene evolution. Because many TEs are taxon-specific, their integration into coding regions could accelerate species divergence.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                15 May 2019
                July 2019
                : 9
                : 7
                : 2235-2244
                Affiliations
                [* ]Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158
                []Salk Institute for Biological Studies, La Jolla, CA 92037
                []Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA
                [§ ]Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, Chan-Zuckerberg Biohub, San Francisco, CA 94158
                Author notes
                [1 ]Corresponding author: N372C Genentech Hall, 600 16 th Street, San Francisco, CA 94158. E-mail:: hitenmadhani@ 123456gmail.com
                Author information
                http://orcid.org/0000-0001-7400-6657
                Article
                GGG_400330
                10.1534/g3.119.400330
                6643885
                31092606
                08dc3610-3675-4eb3-9b47-d794aee1f16d
                Copyright © 2019 Burke et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 March 2019
                : 08 May 2019
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 45, Pages: 10
                Categories
                Investigations

                Genetics
                rnai,transposon,rna surveillance
                Genetics
                rnai, transposon, rna surveillance

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content79

                Cited by10

                Most referenced authors1,349