15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Active galactic nucleus feedback in clusters of galaxies

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies

            We simulate the growth of galaxies and their central supermassive black holes by implementing a suite of semi-analytic models on the output of the Millennium Run, a very large simulation of the concordance LCDM cosmogony. Our procedures follow the detailed assembly history of each object and are able to track the evolution of all galaxies more massive than the Small Magellanic Cloud throughout a volume comparable to that of large modern redshift surveys. In this first paper we supplement previous treatments of the growth and activity of central black holes with a new model for `radio' feedback from those AGN that lie at the centre of a quasistatic X-ray emitting atmosphere in a galaxy group or cluster. We show that for energetically and observationally plausible parameters such a model can simultaneously explain: (i) the low observed mass drop-out rate in cooling flows; (ii) the exponential cut-off at the bright end of the galaxy luminosity function; and (iii) the fact that the most massive galaxies tend to be bulge-dominated systems in clusters and to contain systematically older stars than lower mass galaxies. This success occurs because static hot atmospheres form only in the most massive structures, and radio feedback (in contrast, for example, to supernova or starburst feedback) can suppress further cooling and star formation without itself requiring star formation. We discuss possible physical models which might explain the accretion rate scalings required for our phenomenological `radio mode' model to be successful.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Feedback-Regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies

              We present an analysis of the growth of black holes through accretion and bulges through star formation in 33 galaxies at the centers of cooling flows. Most of these systems show evidence of cavities in the intracluster medium (ICM) inflated by radio jets emanating from their active galactic nuclei (AGN). We present a new and extensive analysis of X-ray cavities in these systems. We find that AGN are energetically able to balance radiative losses (cooling) from the ICM in more than half of our sample. Using a subsample of 17 systems, we examine the relationship between cooling and star formation. We find that the star formation rates are approaching or are comparable to X-ray and far UV limits on the rates of gas condensation onto the central galaxy. The remaining radiative losses could be offset by AGN feedback. The vast gulf between radiative losses and the sink of cooling material, which has been the primary objection to cooling flows, has narrowed and, in some cases, is no longer a serious issue. Using the cavity (jet) powers, we place strong lower limits on the rate of growth of supermassive black holes in central galaxies, and we find that they are growing at an average rate of ~ 0.1 solar masses per year, with some systems growing as quickly as ~ 1 solar mass per year. We find a trend between bulge growth (star formation) and black hole growth that is approximately in accordance with the slope of the local (Magorrian) relation between black hole and bulge mass. However, the large scatter in the trend suggests that bulges and black holes do not always grow in lock step. (Abridged)
                Bookmark

                Author and article information

                Journal
                05 April 2010
                Article
                10.1073/pnas.0913904107
                1004.0671
                08c76444-71d1-42e9-8b1f-7bd9774cfd10

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Refereed review article published in Chandra's First Decade of Discovery Special Feature edition of the Proceedings of the National Academy of Sciences
                astro-ph.CO astro-ph.HE

                Comments

                Comment on this article