1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Methylene blue degradation using ZnO:CuO:Al2O3 nanocomposite synthesized by liquid laser ablation

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Management of validation of HPLC method for determination of acetylsalicylic acid impurities in a new pharmaceutical product

          The work mainly focused on a validation of the method for determining the content of salicylic acid and individual unknown impurities in new pharmaceutical product—tablets containing: 75, 100 or 150 mg of acetylsalicylic acid and glycine in the amount of 40 mg for each dosage. The separation of the components was carried out by means of HPLC, using a Waters Symmetry C18 column (4.6 × 250 mm, 5 μm) as the stationary phase. The mobile phase consisted of a mixture of 85% orthophosphoric acid, acetonitrile and purified water (2:400:600 V/V/V). Detection was carried out at a wavelength of 237 nm, with a constant flow rate of 1.0 ml min −1 . In order to verify the method, linearity, precision (repeatability and reproducibility), accuracy, specificity, range, robustness, system precision, stability of the test and standard solution, limit of quantification and forced degradation were determined. Validation tests were performed in accordance with ICH (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use) guidelines. The method was validated successfully. It was confirmed that the method in a tested range of 0.005–0.40% salicylic acid with respect to acetylsalicylic acid content is linear, precise and accurate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode

            A composite film of nickel sulfide/platinum/titanium foil (NiS/Pt/Ti) with low cost and high electrocatalytic activity was synthesized by the use of an in situ electropolymerization route and proposed as a counter electrode (CE) catalyst for flexible dye-sensitized solar cells (FDSSCs). The FDSSC with the NiS/Pt/Ti CE exhibited a comparable power conversion efficiency of 7.20% to the FDSSC with the platinum/titanium (Pt/Ti) CE showing 6.07%. The surface morphology of the NiS/Pt/Ti CE with one-dimensional (1D) structure is characterized by using the scanning electron microscopy (SEM). The NiS/Pt/Ti CE also displayed multiple electrochemical functions of excellent conductivity, great electrocatalytic ability for iodine/triiodine, and low charge transfer resistance of 2.61 ± 0.02 Ω cm2, which were characterized by using the cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization plots. The photocurrent-photovoltage (J-V) character curves were further used to calculate the theoretical optical light performance parameters of the FDSSCs. It may be said that the NiS/Pt/Ti counter electrode is a promising catalytic material to replace the expensive platinum in FDSSCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination

              The photocatalytic degradation of organic dyes such as methylene blue and methyl orange in the presence of various percentages of composite catalyst under visible light irradiation was carried out. The catalyst ZnO nanorods and ZnO/CuO nanocomposites of different weight ratios were prepared by new thermal decomposition method, which is simple and cost effective. The prepared catalysts were characterized by different techniques such as X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and UV-visible absorption spectroscopy. Further, the most photocatalytically active composite material was used for degradation of real textile waste water under visible light illumination. The irradiated samples were analysed by total organic carbon and chemical oxygen demand. The efficiency of the catalyst and their photocatalytic mechanism has been discussed in detail.
                Bookmark

                Author and article information

                Journal
                Optical and Quantum Electronics
                Opt Quant Electron
                Springer Science and Business Media LLC
                0306-8919
                1572-817X
                April 2023
                February 05 2023
                April 2023
                : 55
                : 4
                Article
                10.1007/s11082-023-04597-z
                0891723f-3b84-4dae-b317-bc6226f7ca4f
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article