12
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The ERβ5 splice variant increases oestrogen responsiveness of ERα pos Ishikawa cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endometrial cancer is a common gynaeological malignancy: life time exposure to oestrogen is a key risk factor. Oestrogen action is mediated by receptors encoded by ESR1 (ERα) and ESR2 (ERβ): ERα plays a key role in regulating endometrial cell proliferation. A truncated splice variant isoform (ERβ5) encoded by ESR2 is highly expressed in cancers. This study explored whether ERβ5 alters oestrogen responsiveness of endometrial epithelial cells. Immunhistochemistry profiling of human endometrial cancer tissue biopsies identified epithelial cells co-expressing ERβ5 and ERα in stage I endometrial adenocarcinomas and post menopausal endometrium. Induced co-expression of ERβ5 in ERα pos endometrial cancer cells (Ishikawa) significantly increased ligand-dependent activation of an ERE-luciferase reporter stimulated by either E2 or the ERα-selective agonist 1,3,5-(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) compared to untransfected cells. Fluorescence recovery after photobleaching (FRAP) analysis of tagged yellow fluorescent protein (YFP)-ERβ5 transfected into Ishikawa cells revealed that incubation with E2 induced a transient reduction in intra-nuclear mobility characterised by punctate protein redistribution which phenocopied the behaviour of ERα following ligand activation with E2. In ERα neg MDA-MD-231 breast cancer cells, there was no E2-dependent change in mobility of YFP-ERβ5 and no activation of the ERE reporter in cells expressing ERβ5. In conclusion, we demonstrate that ERβ5 can act as heterodimeric partner to ERα in Ishikawa cells and increases their sensitivity to E2. We speculate that expression of ERβ5 in endometrial epithelial cells may increase the risk of malignant transformation and suggest that immunostaining for ERβ5 should be included in diagnostic assessment of women with early grade cancers.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Type I and II endometrial cancers: have they different risk factors?

          Endometrial cancers have long been divided into estrogen-dependent type I and the less common clinically aggressive estrogen-independent type II. Little is known about risk factors for type II tumors because most studies lack sufficient cases to study these much less common tumors separately. We examined whether so-called classical endometrial cancer risk factors also influence the risk of type II tumors. Individual-level data from 10 cohort and 14 case-control studies from the Epidemiology of Endometrial Cancer Consortium were pooled. A total of 14,069 endometrial cancer cases and 35,312 controls were included. We classified endometrioid (n = 7,246), adenocarcinoma not otherwise specified (n = 4,830), and adenocarcinoma with squamous differentiation (n = 777) as type I tumors and serous (n = 508) and mixed cell (n = 346) as type II tumors. Parity, oral contraceptive use, cigarette smoking, age at menarche, and diabetes were associated with type I and type II tumors to similar extents. Body mass index, however, had a greater effect on type I tumors than on type II tumors: odds ratio (OR) per 2 kg/m(2) increase was 1.20 (95% CI, 1.19 to 1.21) for type I and 1.12 (95% CI, 1.09 to 1.14) for type II tumors (P heterogeneity < .0001). Risk factor patterns for high-grade endometrioid tumors and type II tumors were similar. The results of this pooled analysis suggest that the two endometrial cancer types share many common etiologic factors. The etiology of type II tumors may, therefore, not be completely estrogen independent, as previously believed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling.

            Estrogen receptor beta (ER-beta) regulates diverse physiological functions in the human body. Current studies are confined to ER-beta1, and the functional roles of isoforms 2, 4, and 5 remain unclear. Full-length ER-beta4 and -beta5 isoforms were obtained from a prostate cell line, and they exhibit differential expression in a wide variety of human tissues/cell lines. Through molecular modeling, we established that only ER-beta1 has a full-length helix 11 and a helix 12 that assumes an agonist-directed position. In ER-beta2, the shortened C terminus results in a disoriented helix 12 and marked shrinkage in the coactivator binding cleft. ER-beta4 and -beta5 completely lack helix 12. We further demonstrated that ER-beta1 is the only fully functional isoform, whereas ER-beta2, -beta4, and -beta5 do not form homodimers and have no innate activities of their own. However, the isoforms can heterodimerize with ER-beta1 and enhance its transactivation in a ligand-dependent manner. ER-beta1 tends to form heterodimers with other isoforms under the stimulation of estrogens but not phytoestrogens. Collectively, these data support the premise that (i) ER-beta1 is the obligatory partner of an ER-beta dimer, whereas the other isoforms function as variable dimer partners with enhancer activity, and (ii) a single functional helix 12 in a dimer is sufficient for gene transactivation. Thus, ER-beta behaves like a noncanonical type-I receptor, and its action may depend on differential amounts of ER-beta1 homo- and heterodimers formed upon stimulation by a specific ligand. Our findings have provided previously unrecognized directions for studying ER-beta signaling and design of ER-beta-based therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of estrogen receptor beta on gene networks regulated by estrogen receptor alpha in breast cancer cells.

              Two subtypes of the estrogen receptor (ER), ERalpha and ERbeta, mediate the actions of estrogens, and although 70% of human breast cancers express ERbeta along with ERalpha, little is known about the possible comodulatory effects of these two ERs. To investigate this, we have used adenoviral gene delivery to produce human breast cancer (MCF-7) cells expressing different levels of ERbeta, along with their endogenous ERalpha, and have examined the effects of ERbeta and receptor occupancy, using ER subtype selective ligands, on genome-wide gene expression by microarray and pathway network analysis. ERbeta had diverse effects on gene expression, enhancing or counteracting ERalpha regulation for distinct subsets of estrogen target genes. Strikingly, ERbeta in the absence of estradiol (E2), elicited the stimulation or suppression of many genes that were normally only regulated by ERalpha with E2. In addition, ERbeta plus E2 elicited the expression of a unique group of genes that were not regulated by ERalpha plus E2 alone. The expression of genes in many functional categories were modulated by ERbeta, with the greatest numbers associated with transcription factors and signal transduction pathways. Regulation of multiple components in the TGFbeta and semaphorin pathways, and of genes controlling cell cycle progression and apoptosis, may contribute to the suppression of cell proliferation observed with ERbeta. Our observations suggest that the relative levels of ERbeta and ERalpha in breast cancers are likely to impact cell proliferation and the activities of diverse signaling pathways and their response to ER ligands and endocrine therapies.
                Bookmark

                Author and article information

                Journal
                Endocr Relat Cancer
                Endocr. Relat. Cancer
                ERC
                Endocrine-Related Cancer
                Bioscientifica Ltd (Bristol )
                1351-0088
                1479-6821
                February 2020
                27 November 2019
                : 27
                : 2
                : 55-66
                Affiliations
                [1 ]The University of Edinburgh Centre for Inflammation Research , Queen’s Medical Research Institute, Edinburgh, UK
                Author notes
                Correspondence should be addressed to P T K Saunders: p.saunders@ 123456ed.ac.uk

                *(N Itani is now at Division of Women’s Health, Women’s Health Academic Centre, King’s College London and King’s Health Partners, London, UK)

                (C Fitzgerald is now at DePuy Synthes, Johnson & Johnson Ireland Ltd, Dublin, Ireland)

                Article
                ERC-19-0291
                10.1530/ERC-19-0291
                6933808
                31778358
                084e375e-a9f3-4d73-8109-8d029979ef46
                © 2020 The authors

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 20 November 2019
                : 27 November 2019
                Categories
                Research

                Oncology & Radiotherapy
                estrogen receptor,endometrium,estrogen,carcinoma
                Oncology & Radiotherapy
                estrogen receptor, endometrium, estrogen, carcinoma

                Comments

                Comment on this article