8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Schematic diagram showing the various water/wastewater treatment processes in which CN-based systems can be utilized.

          Abstract

          In recent years, sustainable nanomaterials, such as cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), jointly referred to as cellulose nanomaterials (CNs), have been explored for application in water/wastewater treatment processes. Unique properties of CNs coupled with the global quest to develop low carbon footprint alternatives as aids for water treatment processes have been the driving force for the increasing interest among researchers worldwide. There are several reviews that describe the chemistry and modification of CNs; however, a comprehensive review on the potential application of CNs in water/wastewater treatment processes is scarce. Thus, this review provides a detailed overview of pristine, surface-functionalized CNs and CN-incorporated nanocomposites for applications in various water/wastewater treatment processes, such as sorption, membrane filtration, and flocculation. The latest advances and developments on other processes using CNs, such as catalytic degradation and disinfection, are also discussed. The mechanism responsible for the performance of CN-based systems in all these water treatment processes is also elucidated. The key challenges and knowledge gaps that limit the practical application of CNs in water treatment processes are examined, which offer appropriate perspectives to researchers working in this field.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Non-conventional low-cost adsorbents for dye removal: a review.

          Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred sorbent for color removal, its widespread use is restricted due to high cost. As such, alternative non-conventional sorbents have been investigated. It is well-known that natural materials, waste materials from industry and agriculture and biosorbents can be obtained and employed as inexpensive sorbents. In this review, an extensive list of sorbent literature has been compiled. The review (i) presents a critical analysis of these materials; (ii) describes their characteristics, advantages and limitations; and (iii) discusses various mechanisms involved. It is evident from a literature survey of about 210 recent papers that low-cost sorbents have demonstrated outstanding removal capabilities for certain dyes. In particular, chitosan might be a promising adsorbent for environmental and purification purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adsorption of methylene blue on low-cost adsorbents: a review.

            In this article, the use of low-cost adsorbents for the removal of methylene blue (MB) from solution has been reviewed. Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those which are not easily biodegradable. The removal of MB, as a pollutant, from waste waters of textile, paper, printing and other industries has been addressed by the researchers. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred adsorbent for color removal, its widespread use is restricted due to its relatively high cost which led to the researches on alternative non-conventional and low-cost adsorbents. The purpose of this review article is to organize the scattered available information on various aspects on a wide range of potentially low-cost adsorbents for MB removal. These include agricultural wastes, industrial solid wastes, biomass, clays minerals and zeolites. Agricultural waste materials being highly efficient, low cost and renewable source of biomass can be exploited for MB remediation. It is evident from a literature survey of about 185 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for MB. Copyright (c) 2009 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.

              Never-dried and once-dried hardwood celluloses were oxidized by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated system, and highly crystalline and individualized cellulose nanofibers, dispersed in water, were prepared by mechanical treatment of the oxidized cellulose/water slurries. When carboxylate contents formed from the primary hydroxyl groups of the celluloses reached approximately 1.5 mmol/g, the oxidized cellulose/water slurries were mostly converted to transparent and highly viscous dispersions by mechanical treatment. Transmission electron microscopic observation showed that the dispersions consisted of individualized cellulose nanofibers 3-4 nm in width and a few microns in length. No intrinsic differences between never-dried and once-dried celluloses were found for preparing the dispersion, as long as carboxylate contents in the TEMPO-oxidized celluloses reached approximately 1.5 mmol/g. Changes in viscosity of the dispersions during the mechanical treatment corresponded with those in the dispersed states of the cellulose nanofibers in water.
                Bookmark

                Author and article information

                Journal
                ESNNA4
                Environmental Science: Nano
                Environ. Sci.: Nano
                Royal Society of Chemistry (RSC)
                2051-8153
                2051-8161
                2018
                2018
                : 5
                : 3
                : 623-658
                Affiliations
                [1 ]Department of Chemical Engineering
                [2 ]Waterloo Institute for Nanotechnology
                [3 ]University of Waterloo
                [4 ]Waterloo
                [5 ]N2L 3G1 Canada
                Article
                10.1039/C7EN01029J
                0847fac0-c066-440d-9636-0a466cc8bcbd
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article