4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNAi technology targeting the FGFR3-TACC3 fusion breakpoint: an opportunity for precision medicine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Fusion genes form as a result of abnormal chromosomal rearrangements linking previously separate genes into one transcript. The FGFR3-TACC3 fusion gene (F3-T3) has been shown to drive gliomagenesis in glioblastoma (GBM), a cancer that is notoriously resistant to therapy. However, successful targeting of F3-T3 via small molecular inhibitors has not revealed robust therapeutic responses, and specific targeting of F3-T3 has not been achieved heretofore. Here, we demonstrate that depleting F3-T3 using custom siRNA to the fusion breakpoint junction results in successful inhibition of F3-T3+ GBMs, and that exosomes can successfully deliver these siRNAs.

          Methods

          We engineered 10 unique siRNAs (iF3T3) that specifically spanned the most common F3-T3 breakpoint with varying degrees of overlap, and assayed depletion by qPCR and immunoblotting. Cell viability assays were performed. Mesenchymal stem cell–derived exosomes (UC-MSC) were electroporated with iF3T3, added to cells, and F3-T3 depletion measured by qPCR.

          Results

          We verified that depleting F3-T3 using shRNA to FGFR3 resulted in decreased cell viability and improved survival in glioma-bearing mice. We then demonstrated that 7/10 iF3T3 depleted F3-T3, and importantly, did not affect levels of wild-type (WT) FGFR3 or TACC3. iF3T3 decreased cell viability in both F3T3+ GBM and bladder cancer cell lines. UC-MSC exosomes successfully delivered iF3T3 in vitro, resulting in F3-T3 depletion.

          Conclusion

          Targeting F3-T3 using siRNAs specific to the fusion breakpoint is capable of eradicating F3T3+ cancers without toxicity related to inhibition of WT FGFR3 or TACC3, and UC-MSC exosomes may be a plausible vehicle to deliver iF3T3.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

          Glioblastoma, the most common primary brain tumor in adults, is usually rapidly fatal. The current standard of care for newly diagnosed glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy. In this trial we compared radiotherapy alone with radiotherapy plus temozolomide, given concomitantly with and after radiotherapy, in terms of efficacy and safety. Patients with newly diagnosed, histologically confirmed glioblastoma were randomly assigned to receive radiotherapy alone (fractionated focal irradiation in daily fractions of 2 Gy given 5 days per week for 6 weeks, for a total of 60 Gy) or radiotherapy plus continuous daily temozolomide (75 mg per square meter of body-surface area per day, 7 days per week from the first to the last day of radiotherapy), followed by six cycles of adjuvant temozolomide (150 to 200 mg per square meter for 5 days during each 28-day cycle). The primary end point was overall survival. A total of 573 patients from 85 centers underwent randomization. The median age was 56 years, and 84 percent of patients had undergone debulking surgery. At a median follow-up of 28 months, the median survival was 14.6 months with radiotherapy plus temozolomide and 12.1 months with radiotherapy alone. The unadjusted hazard ratio for death in the radiotherapy-plus-temozolomide group was 0.63 (95 percent confidence interval, 0.52 to 0.75; P<0.001 by the log-rank test). The two-year survival rate was 26.5 percent with radiotherapy plus temozolomide and 10.4 percent with radiotherapy alone. Concomitant treatment with radiotherapy plus temozolomide resulted in grade 3 or 4 hematologic toxic effects in 7 percent of patients. The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.

            Improvement in the clinical outcome of lung cancer is likely to be achieved by identification of the molecular events that underlie its pathogenesis. Here we show that a small inversion within chromosome 2p results in the formation of a fusion gene comprising portions of the echinoderm microtubule-associated protein-like 4 (EML4) gene and the anaplastic lymphoma kinase (ALK) gene in non-small-cell lung cancer (NSCLC) cells. Mouse 3T3 fibroblasts forced to express this human fusion tyrosine kinase generated transformed foci in culture and subcutaneous tumours in nude mice. The EML4-ALK fusion transcript was detected in 6.7% (5 out of 75) of NSCLC patients examined; these individuals were distinct from those harbouring mutations in the epidermal growth factor receptor gene. Our data demonstrate that a subset of NSCLC patients may express a transforming fusion kinase that is a promising candidate for a therapeutic target as well as for a diagnostic molecular marker in NSCLC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.

              The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell-derived factor-1alpha, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-beta (hMSC-IFN-beta). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-beta against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-beta significantly increase animal survival compared with controls (P < 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage.
                Bookmark

                Author and article information

                Journal
                Neurooncol Adv
                Neurooncol Adv
                noa
                Neuro-oncology Advances
                Oxford University Press (US )
                2632-2498
                Jan-Dec 2020
                16 October 2020
                16 October 2020
                : 2
                : 1
                : vdaa132
                Affiliations
                [1 ] Department of Neurosurgery, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
                [2 ] Brain Tumor Center, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
                [3 ] Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
                [4 ] Department of Pathology, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA
                Author notes
                Corresponding Author: Frederick F. Lang, MD, Department of Neurosurgery, Unit 442, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA ( flang@ 123456mdanderson.org ).
                Article
                vdaa132
                10.1093/noajnl/vdaa132
                7680176
                33241214
                0817f340-488e-4759-9dd0-993aac013086
                © The Author(s) 2020. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 21 November 2020
                Page count
                Pages: 9
                Funding
                Funded by: National Cancer Institute, DOI 10.13039/100000054;
                Award ID: CA115729
                Award ID: R01CA214749
                Award ID: 1P50 CA127001
                Funded by: University of Texas MD Anderson Cancer Center, DOI 10.13039/100007313;
                Funded by: Broach Foundation for Brain Cancer Research, DOI 10.13039/100016373;
                Funded by: Elias Family Fund;
                Funded by: Jason and Priscilla Hiley Fund;
                Funded by: Bauman Family Curefest fund;
                Funded by: Chuanwei Lu Fund;
                Funded by: Sweet Family Fund;
                Funded by: Schneider Foundation;
                Funded by: Jim & Pam Harris Fund;
                Funded by: Gene Pennebaker Brain Cancer Fund;
                Funded by: Sorenson Foundation;
                Funded by: Brian McCulloch Fund;
                Funded by: TLC Foundation;
                Funded by: Pappas Endowed Fund;
                Categories
                Basic and Translational Investigations
                AcademicSubjects/MED00300
                AcademicSubjects/MED00310

                fgfr3-tacc3,fusion genes,glioblastoma,precision medicine,rnai

                Comments

                Comment on this article