6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of FOXCUT, CCAT2, and HULC LncRNA Expression Levels and Apoptosis Induction by Sodium Butyrate in PC-3 and LNCAP Prostate Cancer Cell Lines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sodium butyrate (NaBu) is a short-chain fatty acid acting as a histone deacetylase inhibitor, and has been shown to be a potential regulator of cancer cell death. This study aimed to evaluate the effect of NaBu on cell cycle control, apoptosis, and expression of some lncRNAs in two human prostate cancer cells (PC-3 and LNCAP). Cell viability was assessed and the appropriate dose was determined using the MTT assay. Real-time PCR technique was also used to evaluate the expression levels of HULC, FOXCUT, and CCAT2 lncRNAs. Apoptosis was diagnosed using annexin V staining, and cell cycle distribution was then assessed using flow cytometry with propidium iodide DNA staining. NaBu induced apoptosis in both prostate cancer cell lines in a dose-dependent manner. The expressions of CCAT2 and HULC lncRNAs genes have significantly decreased in the presence of NaBu (P <0.05) in both PC3 and LNCAP cell lines, in comparison with the control. However, no significant difference was observed in the expression of FOXCUT lncRNAs. Moreover, the results of flow cytometry showed an increase in cell cycle arrest of LNCAP cell line at the sub-G1 stage as compared to the control cells, but no significant difference was observed between the control cells and NaBu-exposed PC-3 cells. In addition, the percentages of early and late apoptotic cells following treatment with NaBu were 80% and 49.63% in LNCAP and PC-3 cells, respectively. Our results suggest that NaBu has a positive effect on the induction of apoptosis and inhibition of cell cycle in PC-3 and LNCAP prostate cancer cells.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression

          The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences—particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.

            Large intergenic noncoding RNAs (lincRNAs) are emerging as key regulators of diverse cellular processes. Determining the function of individual lincRNAs remains a challenge. Recent advances in RNA sequencing (RNA-seq) and computational methods allow for an unprecedented analysis of such transcripts. Here, we present an integrative approach to define a reference catalog of >8000 human lincRNAs. Our catalog unifies previously existing annotation sources with transcripts we assembled from RNA-seq data collected from ∼4 billion RNA-seq reads across 24 tissues and cell types. We characterize each lincRNA by a panorama of >30 properties, including sequence, structural, transcriptional, and orthology features. We found that lincRNA expression is strikingly tissue-specific compared with coding genes, and that lincRNAs are typically coexpressed with their neighboring genes, albeit to an extent similar to that of pairs of neighboring protein-coding genes. We distinguish an additional subset of transcripts that have high evolutionary conservation but may include short ORFs and may serve as either lincRNAs or small peptides. Our integrated, comprehensive, yet conservative reference catalog of human lincRNAs reveals the global properties of lincRNAs and will facilitate experimental studies and further functional classification of these genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Epidemiology of Prostate Cancer

              Prostate cancer is a major cause of disease and mortality among men, and each year 1.6 million men are diagnosed with and 366,000 men die of prostate cancer. In this review, we discuss the state of evidence for specific genetic, lifestyle, and dietary factors associated with prostate cancer risk. Given the biological heterogeneity of this cancer, we focus on risk factors for advanced or fatal prostate cancer. First, we provide descriptive epidemiology statistics and patterns for prostate cancer incidence and mortality around the world. This includes discussion of the impact of prostate-specific antigen screening on prostate cancer epidemiology. Next, we summarize evidence for selected risk factors for which there is strong or probable evidence of an association: genetics, obesity and weight change, physical activity, smoking, lycopene and tomatoes, fish, vitamin D and calcium, and statins. Finally, we highlight future directions for prostate cancer epidemiology research.
                Bookmark

                Author and article information

                Journal
                Int J Mol Cell Med
                Int J Mol Cell Med
                IJMCM
                International Journal of Molecular and Cellular Medicine
                Babol University of Medical Sciences (Babol, Iran )
                2251-9637
                2251-9645
                Summer 2021
                10 January 2022
                : 10
                : 3
                : 189-196
                Affiliations
                [1] Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
                Author notes
                [* ]Corresponding author: Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran. E-mail: Ata.sadatshandiz@iauctb.ac.ir
                Article
                10.22088/IJMCM.BUMS.10.3.189
                8800457
                35178357
                07f6b490-2657-4a09-b75e-311e824d8fda

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 April 2021
                : 25 September 2021
                Categories
                Original Article

                prostatic neoplasms,rna,long noncoding rna,apoptosis
                prostatic neoplasms, rna, long noncoding rna, apoptosis

                Comments

                Comment on this article