12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stronger efferent suppression of cochlear neural potentials by contralateral acoustic stimulation in awake than in anesthetized chinchilla

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are two types of sensory cells in the mammalian cochlea, inner hair cells, which make synaptic contact with auditory-nerve afferent fibers, and outer hair cells that are innervated by crossed and uncrossed medial olivocochlear (MOC) efferent fibers. Contralateral acoustic stimulation activates the uncrossed efferent MOC fibers reducing cochlear neural responses, thus modifying the input to the central auditory system. The chinchilla, among all studied mammals, displays the lowest percentage of uncrossed MOC fibers raising questions about the strength and frequency distribution of the contralateral-sound effect in this species. On the other hand, MOC effects on cochlear sensitivity have been mainly studied in anesthetized animals and since the MOC-neuron activity depends on the level of anesthesia, it is important to assess the influence of anesthesia in the strength of efferent effects. Seven adult chinchillas ( Chinchilla laniger) were chronically implanted with round-window electrodes in both cochleae. We compared the effect of contralateral sound in awake and anesthetized condition. Compound action potentials (CAP) and cochlear microphonics (CM) were measured in the ipsilateral cochlea in response to tones in absence and presence of contralateral sound. Control measurements performed after middle-ear muscles section in one animal discarded any possible middle-ear reflex activation. Contralateral sound produced CAP amplitude reductions in all chinchillas, with suppression effects greater by about 1–3 dB in awake than in anesthetized animals. In contrast, CM amplitude increases of up to 1.9 dB were found in only three awake chinchillas. In both conditions the strongest efferent effects were produced by contralateral tones at frequencies equal or close to those of ipsilateral tones. Contralateral CAP suppressions for 1–6 kHz ipsilateral tones corresponded to a span of uncrossed MOC fiber innervation reaching at least the central third of the chinchilla cochlea.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          A cochlear frequency-position function for several species--29 years later.

          Accurate cochlear frequency-position functions based on physiological data would facilitate the interpretation of physiological and psychoacoustic data within and across species. Such functions might aid in developing cochlear models, and cochlear coordinates could provide potentially useful spectral transforms of speech and other acoustic signals. In 1961, an almost-exponential function was developed (Greenwood, 1961b, 1974) by integrating an exponential function fitted to a subset of frequency resolution-integration estimates (critical bandwidths). The resulting frequency-position function was found to fit cochlear observations on human cadaver ears quite well and, with changes of constants, those on elephant, cow, guinea pig, rat, mouse, and chicken (Békésy, 1960), as well as in vivo (behavioral-anatomical) data on cats (Schucknecht, 1953). Since 1961, new mechanical and other physiological data have appeared on the human, cat, guinea pig, chinchilla, monkey, and gerbil. It is shown here that the newer extended data on human cadaver ears and from living animal preparations are quite well fit by the same basic function. The function essentially requires only empirical adjustment of a single parameter to set an upper frequency limit, while a "slope" parameter can be left constant if cochlear partition length is normalized to 1 or scaled if distance is specified in physical units. Constancy of slope and form in dead and living ears and across species increases the probability that the function fitting human cadaver data may apply as well to the living human ear. This prospect increases the function's value in plotting auditory data and in modeling concerned with speech and other bioacoustic signals, since it fits the available physiological data well and, consequently (if those data are correct), remains independent of, and an appropriate means to examine, psychoacoustic data and assumptions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.

            This review covers the basic anatomy and physiology of the olivocochlear reflexes and the use of otoacoustic emissions (OAEs) in humans to monitor the effects of one group, the medial olivocochlear (MOC) efferents. MOC fibers synapse on outer hair cells (OHCs), and activation of these fibers inhibits basilar membrane responses to low-level sounds. This MOC-induced decrease in the gain of the cochlear amplifier is reflected in changes in OAEs. Any OAE can be used to monitor MOC effects on the cochlear amplifier. Each OAE type has its own advantages and disadvantages. The most straightforward technique for monitoring MOC effects is to elicit MOC activity with an elicitor sound contralateral to the OAE test ear. MOC effects can also be monitored using an ipsilateral elicitor of MOC activity, but the ipsilateral elicitor brings additional problems caused by suppression and cochlear slow intrinsic effects. To measure MOC effects accurately, one must ensure that there are no middle-ear-muscle contractions. Although standard clinical middle-ear-muscle tests are not adequate for this, adequate tests can usually be done with OAE-measuring instruments. An additional complication is that most probe sounds also elicit MOC activity, although this does not prevent the probe from showing MOC effects elicited by contralateral sound. A variety of data indicate that MOC efferents help to reduce acoustic trauma and lessen the masking of transients by background noise; for instance, they aid in speech comprehension in noise. However, much remains to be learned about the role of efferents in auditory function. Monitoring MOC effects in humans using OAEs should continue to provide valuable insights into the role of MOC efferents and may also provide clinical benefits.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Efferent innervation of the organ of corti: two separate systems.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Syst Neurosci
                Front Syst Neurosci
                Front. Syst. Neurosci.
                Frontiers in Systems Neuroscience
                Frontiers Media S.A.
                1662-5137
                02 March 2015
                2015
                : 9
                : 21
                Affiliations
                [1] 1Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile Santiago, Chile
                [2] 2Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile Santiago, RM, Chile
                [3] 3Departamento de Otorrinolaringología, Hospital Clínico, Universidad de Chile Santiago, Chile
                Author notes

                Edited by: Ana Elgoyhen, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Argentina

                Reviewed by: John J. Guinan, Massachusetts Eye and Ear Infirmary and Harvard Medical School, USA; Maria Eugenia Gomez-Casati, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Argentina

                *Correspondence: Luis Robles, Programa de Fisiología y Biofísica, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, RM, 8380453, Chile e-mail: lrobles@ 123456med.uchile.cl

                Present address: Diego Elgueda, Institute for Systems Research and Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, USA

                This article was submitted to the journal Frontiers in Systems Neuroscience.

                Article
                10.3389/fnsys.2015.00021
                4345911
                07e68f47-96e2-43b0-8dab-4e73d1ea6df0
                Copyright © 2015 Aedo, Tapia, Pavez, Elgueda, Delano and Robles.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 November 2014
                : 08 February 2015
                Page count
                Figures: 12, Tables: 0, Equations: 4, References: 46, Pages: 12, Words: 8013
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                olivocochlear,auditory efferent,contralateral moc reflex,cap suppression,frequency tuning,anesthesia

                Comments

                Comment on this article