13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomal miRNA-155-5p from M1-polarized macrophages suppresses angiogenesis by targeting GDF6 to interrupt diabetic wound healing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unprogrammed macrophage polarization, especially prolonged activation of proinflammatory macrophages, is associated with delayed wound healing in diabetic objectives. Macrophage-derived exosomes cargo a variety of microRNAs (miRNAs), participating in different stages in wound healing. Here, exosomes were isolated from naive bone marrow–derived macrophages (BMDMs) (M0-Exos), interferon-γ plus lipopolysaccharide-polarized BMDMs (M1-Exos), and interleukin-4-polarized BMDMs (M2-Exos). M1-Exos impaired migration and tube formation in human umbilical vein endothelial cells (HUVECs) compared to M0-Exos, whereas M2-Exos exhibited the opposite effects. High-throughput sequencing was performed to decipher the miRNA expression profiles in M0-Exos, M1-Exos, and M2-Exos. A total of 63 miRNAs were identified to be differentially expressed in exosomes derived from polarized BMDMs. Among them, miRNA-155-5p is highly expressed in M1-Exos, which interrupted angiogenesis in HUVECs. Furthermore, miRNA-155-5p directly binds to the 3′ UTR of growth differentiation factor 6 ( GDF6) mRNA to suppress its protein expression. Lastly, local administration of a temperature-sensitive hydrogel Pluronic F-127 loading miRNA-155-5p antagomiR promoted angiogenesis and accelerated wound healing in diabetic db/db mice via enhancing GDF6. In summary, this study deciphered the miRNA expression profiles in exosomes from polarized macrophages. M2-like macrophage-derived exosomes and miRNA-155-5p inhibitors could be promising therapeutics against diabetic foot ulcers.

          Graphical abstract

          Abstract

          Lin and colleagues discovered that M2-polarized macrophage-derived exosomes promote angiogenesis in HUVECs. They further deciphered the miRNA expression profiles in macrophage-derived exosomes and identified that miRNA-155-5p interrupts angiogenesis in HUVECs by targeting GDF6. They developed a thermosensitive hydrogel to deliver miRNA-155-5p antagomiR, which accelerates wound healing in db/db mice.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: genomics, biogenesis, mechanism, and function.

          MicroRNAs (miRNAs) are endogenous approximately 22 nt RNAs that can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Predicting effective microRNA target sites in mammalian mRNAs

            MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks. DOI: http://dx.doi.org/10.7554/eLife.05005.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

              MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Ther Nucleic Acids
                Mol Ther Nucleic Acids
                Molecular Therapy. Nucleic Acids
                American Society of Gene & Cell Therapy
                2162-2531
                10 November 2023
                12 December 2023
                10 November 2023
                : 34
                : 102074
                Affiliations
                [1 ]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
                [2 ]Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, China
                [3 ]Department of Pharmaceutical Sciences and Technology, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
                Author notes
                []Corresponding author: Ligen Lin, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China. ligenl@ 123456um.edu.mo
                Article
                S2162-2531(23)00292-5 102074
                10.1016/j.omtn.2023.102074
                10701080
                38074896
                07d5c792-736e-4917-9774-590398674045
                © 2023 The Author(s)

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 August 2023
                : 8 November 2023
                Categories
                Original Article

                Molecular medicine
                mt: oligonucleotides: therapies and applications,polarized macrophage-derived exosomes,microrna expression profiles,diabetic wound healing,angiogenesis,growth differentiation factor 6,thermosensitive hydrogel

                Comments

                Comment on this article