12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Complexity, concentration and contagion

      , ,
      Journal of Monetary Economics
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Error and attack tolerance of complex networks

          Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple model of global cascades on random networks.

            The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascades-herein called global cascades-that occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Random graphs with arbitrary degree distributions and their applications

              Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results, we derive exact expressions for the position of the phase transition at which a giant component first forms, the mean component size, the size of the giant component if there is one, the mean number of vertices a certain distance away from a randomly chosen vertex, and the average vertex-vertex distance within a graph. We apply our theory to some real-world graphs, including the world-wide web and collaboration graphs of scientists and Fortune 1000 company directors. We demonstrate that in some cases random graphs with appropriate distributions of vertex degree predict with surprising accuracy the behavior of the real world, while in others there is a measurable discrepancy between theory and reality, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
                Bookmark

                Author and article information

                Journal
                Journal of Monetary Economics
                Journal of Monetary Economics
                Elsevier BV
                03043932
                July 2011
                July 2011
                : 58
                : 5
                : 453-470
                Article
                10.1016/j.jmoneco.2011.05.005
                07a04735-13f7-49d5-89e9-cc41dad6d261
                © 2011

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article