Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Twelve-month, 12 km resolution North American WRF-Chem v3.4 air quality simulation: performance evaluation

      , ,
      Geoscientific Model Development
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p><strong>Abstract.</strong> We present results from and evaluate the performance of a 12-month, 12 km horizontal resolution year 2005 air pollution simulation for the contiguous United States using the WRF-Chem (Weather Research and Forecasting with Chemistry) meteorology and chemical transport model (CTM). We employ the 2005 US National Emissions Inventory, the Regional Atmospheric Chemistry Mechanism (RACM), and the Modal Aerosol Dynamics Model for Europe (MADE) with a volatility basis set (VBS) secondary aerosol module. Overall, model performance is comparable to contemporary modeling efforts used for regulatory and health-effects analysis, with an annual average daytime ozone (O<sub>3</sub>) mean fractional bias (MFB) of 12% and an annual average fine particulate matter (PM<sub>2.5</sub>) MFB of −1%. WRF-Chem, as configured here, tends to overpredict total PM<sub>2.5</sub> at some high concentration locations and generally overpredicts average 24 h O<sub>3</sub> concentrations. Performance is better at predicting daytime-average and daily peak O<sub>3</sub> concentrations, which are more relevant for regulatory and health effects analyses relative to annual average values. Predictive performance for PM<sub>2.5</sub> subspecies is mixed: the model overpredicts particulate sulfate (MFB = 36%), underpredicts particulate nitrate (MFB = −110%) and organic carbon (MFB = −29%), and relatively accurately predicts particulate ammonium (MFB = 3%) and elemental carbon (MFB = 3%), so that the accuracy in total PM<sub>2.5</sub> predictions is to some extent a function of offsetting over- and underpredictions of PM<sub>2.5</sub> subspecies. Model predictive performance for PM<sub>2.5</sub> and its subspecies is in general worse in winter and in the western US than in other seasons and regions, suggesting spatial and temporal opportunities for future WRF-Chem model development and evaluation.</p>

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term ozone exposure and mortality.

          Although many studies have linked elevations in tropospheric ozone to adverse health outcomes, the effect of long-term exposure to ozone on air pollution-related mortality remains uncertain. We examined the potential contribution of exposure to ozone to the risk of death from cardiopulmonary causes and specifically to death from respiratory causes. Data from the study cohort of the American Cancer Society Cancer Prevention Study II were correlated with air-pollution data from 96 metropolitan statistical areas in the United States. Data were analyzed from 448,850 subjects, with 118,777 deaths in an 18-year follow-up period. Data on daily maximum ozone concentrations were obtained from April 1 to September 30 for the years 1977 through 2000. Data on concentrations of fine particulate matter (particles that are < or = 2.5 microm in aerodynamic diameter [PM(2.5)]) were obtained for the years 1999 and 2000. Associations between ozone concentrations and the risk of death were evaluated with the use of standard and multilevel Cox regression models. In single-pollutant models, increased concentrations of either PM(2.5) or ozone were significantly associated with an increased risk of death from cardiopulmonary causes. In two-pollutant models, PM(2.5) was associated with the risk of death from cardiovascular causes, whereas ozone was associated with the risk of death from respiratory causes. The estimated relative risk of death from respiratory causes that was associated with an increment in ozone concentration of 10 ppb was 1.040 (95% confidence interval, 1.010 to 1.067). The association of ozone with the risk of death from respiratory causes was insensitive to adjustment for confounders and to the type of statistical model used. In this large study, we were not able to detect an effect of ozone on the risk of death from cardiovascular causes when the concentration of PM(2.5) was taken into account. We did, however, demonstrate a significant increase in the risk of death from respiratory causes in association with an increase in ozone concentration. 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4)

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol

                Bookmark

                Author and article information

                Journal
                Geoscientific Model Development
                Geosci. Model Dev.
                Copernicus GmbH
                1991-9603
                2015
                April 07 2015
                : 8
                : 4
                : 957-973
                Article
                10.5194/gmd-8-957-2015
                079ea641-0620-4d98-8e91-75fb498c370e
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article