4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      G-protein Coupled Receptor 34 Promotes Gliomagenesis by Inducing Proliferation and Malignant Phenotype via TGF-Beta/Smad Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: G-protein coupled receptor 34 (GPR34) is involved in cell motility, differentiation, and mitosis. GPR34 was reported to be highly expressed and play an oncogenic role in several solid tumors. Here, we investigated the mechanisms underlying how GPR34 promotes glioma progression. Methods: Bioinformatic analysis was performed on RNA-seq and clinical data from the gene expression omnibus (GEO), cancer genome atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. TIMER database and single-sample GSEA (ssGAEA) method were used to investigate the association between the GPR34 expression and immune infiltration level in glioma. Cox regression analysis was employed to ascertain whether the risk signature was an independent prognostic indicator for glioma. The viability and migratory/invasive potential of glioma cells were assessed using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Results: We found that GPR34 expression was positively correlated with immune infiltration level and that high GPR34 level may be associated with poor prognosis in glioma. We further found that GPR34 may serve as an independent prognostic marker and prediction factor for the clinicopathological features of glioma. We showed that knocking down GPR34 attenuated the viability and migratory/invasive capacity of glioma cells (U251 and LN229), while GPR34 overexpression exerted the opposite effects. Additionally, core enrichment in the GSEA analysis indicated that GPR34-mediated gliomagenesis was associated with the cell cycle arrest, epithelial–mesenchymal transition (EMT), and activation of the TGF-β/Smad pathway; furthermore, inhibiting TGF-β/Smad signaling using LY2157299, a TGF-β inhibitor, reversed the oncogenic effects and malignant phenotype associated with GPR34 overexpression. Conclusion: GPR34 enhances the malignancy and carcinogenesis of glioma by promoting an EMT-like process, G1/S phase cell cycle transition, and TGF-β/Smad signaling. Accordingly, GPR34 likely functions as an oncogene in glioma and may represent a potential therapeutic target for this cancer.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TGF-beta signal transduction.

            The transforming growth factor beta (TGF-beta) family of growth factors control the development and homeostasis of most tissues in metazoan organisms. Work over the past few years has led to the elucidation of a TGF-beta signal transduction network. This network involves receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins, which move into the nucleus, where they activate target gene transcription in association with DNA-binding partners. Distinct repertoires of receptors, SMAD proteins, and DNA-binding partners seemingly underlie, in a cell-specific manner, the multifunctional nature of TGF-beta and related factors. Mutations in these pathways are the cause of various forms of human cancer and developmental disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Microglial Sensome Revealed by Direct RNA Sequencing

              Microglia, the principal neuroimmune sentinels of the brain, continuously sense changes in their environment and respond to invading pathogens, toxins and cellular debris. Microglia exhibit plasticity and can assume neurotoxic or neuroprotective priming states that determine their responses to danger. We used direct RNA sequencing, without amplification or cDNA synthesis, to determine the quantitative transcriptomes of microglia of healthy adult and aged mice. We validated our findings by fluorescent dual in-situ hybridization, unbiased proteomic analysis and quantitative PCR. We report here that microglia have a distinct transcriptomic signature and express a unique cluster of transcripts encoding proteins for sensing endogenous ligands and microbes that we term the “sensome”. With aging, sensome transcripts for endogenous ligand recognition are downregulated, whereas those involved in microbe recognition and host defense are upregulated. In addition, aging is associated with an overall increase in expression of microglial genes involved in neuroprotection.
                Bookmark

                Author and article information

                Journal
                Technol Cancer Res Treat
                Technol Cancer Res Treat
                TCT
                sptct
                Technology in Cancer Research & Treatment
                SAGE Publications (Sage CA: Los Angeles, CA )
                1533-0346
                1533-0338
                29 June 2022
                2022
                : 21
                : 15330338221105733
                Affiliations
                [1 ]Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
                [2 ]Institute of Brain Science and Brain-Like Intelligence, Ringgold 529858, universityLinyi People’s Hospital; , Linyi, Shandong, People’s Republic of China
                [3 ]Department of Neurosurgery, Ringgold 529858, universityLinyi People’s Hospital; , Linyi, Shandong, People’s Republic of China
                Author notes
                [*]Xueyuan Heng, Department of Neurosurgery, Linyi People's Hospital, Linyi 276000, Shandong, China. Email: hengxuey001@ 123456163.com
                [*]Fan Feng, Department of Neurosurgery, Linyi People's Hospital, Linyi 276000, Shandong, China. Email: stellafan26@ 123456163.com
                Author information
                https://orcid.org/0000-0002-0352-5318
                Article
                10.1177_15330338221105733
                10.1177/15330338221105733
                9252019
                35770303
                07408eed-4fe6-450c-b93f-1d9b166b2ea7
                © The Author(s) 2022

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage).

                History
                : 16 February 2022
                : 5 April 2022
                : 18 May 2022
                Funding
                Funded by: Natural Science Foundation of Shandong Province, FundRef https://doi.org/10.13039/501100007129;
                Award ID: ZR2014HM077
                Categories
                Original Article
                Custom metadata
                ts19
                January-December 2022

                gpr34,glioma,emt,cell cycle,tgf-beta/smad signaling pathway,bioinformatic analysis

                Comments

                Comment on this article