32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential Expression of CHL1 Gene during Development of Major Human Cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis.

          Methodology/Principal Findings

          We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens ( P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression.

          Conclusions/Significance

          Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns of somatic mutation in human cancer genomes.

          Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.

            We have generated a molecular taxonomy of lung carcinoma, the leading cause of cancer death in the United States and worldwide. Using oligonucleotide microarrays, we analyzed mRNA expression levels corresponding to 12,600 transcript sequences in 186 lung tumor samples, including 139 adenocarcinomas resected from the lung. Hierarchical and probabilistic clustering of expression data defined distinct subclasses of lung adenocarcinoma. Among these were tumors with high relative expression of neuroendocrine genes and of type II pneumocyte genes, respectively. Retrospective analysis revealed a less favorable outcome for the adenocarcinomas with neuroendocrine gene expression. The diagnostic potential of expression profiling is emphasized by its ability to discriminate primary lung adenocarcinomas from metastases of extra-pulmonary origin. These results suggest that integration of expression profile data with clinical parameters could aid in diagnosis of lung cancer patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome Remodeling in a Basal-like Breast Cancer Metastasis and Xenograft

              Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumor progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumor, a brain metastasis, and a xenograft derived from the primary tumor. The metastasis contained two de novo mutations and a large deletion not present in the primary tumor, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumor mutations, and displayed a mutation enrichment pattern that paralleled the metastasis (16 of 20 genes). Two overlapping large deletions, encompassing CTNNA1, were present in all three tumor samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared to the primary tumor suggest that secondary tumors may arise from a minority of cells within the primary.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                7 March 2011
                : 6
                : 3
                : e15612
                Affiliations
                [1 ]Laboratory of Structural and Functional Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
                [2 ]Laboratory of Molecular Diagnosis, Russian State Genetics Center GosNIIgenetika, Moscow, Russia
                [3 ]Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
                [4 ]Cardiothoracic Surgery Department, NYU Langone Medical Center, New York, New York, United States of America
                [5 ]Department of Microbiology, Tumor and Cell Biology, Department of Clinical Science and Education, Sodersjukhuset, Karolinska Institute, Stockholm, Sweden
                [6 ]Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                Baylor College of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: MIL VNS ERZ. Performed the experiments: AVK EAA IVP SVI. Analyzed the data: VNS GSK AAD ERZ. Contributed reagents/materials/analysis tools: VNS AVK EAA EAB TTK. Wrote the manuscript: MIL VNS GSK AAD ERZ.

                Article
                PONE-D-10-01944
                10.1371/journal.pone.0015612
                3049765
                21408220
                073f043d-2269-4ebb-a71b-d6899049a319
                Senchenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 August 2010
                : 17 November 2010
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Genetics
                Cancer Genetics
                Molecular Cell Biology
                Signal Transduction
                Signaling in Selected Disciplines
                Oncogenic Signaling
                Medicine
                Obstetrics and Gynecology
                Breast Cancer
                Oncology
                Cancer Detection and Diagnosis
                Early Detection
                Cancers and Neoplasms
                Genitourinary Tract Tumors
                Renal Cell Carcinoma
                Lung and Intrathoracic Tumors
                Non-Small Cell Lung Cancer
                Breast Tumors
                Basic Cancer Research

                Uncategorized
                Uncategorized

                Comments

                Comment on this article