4
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transepithelial Corneal Cross-linking with Supplemental Oxygen in Keratoconus Treatment - Corneal Stromal Demarcation Line and Safety

      ,
      The Open Ophthalmology Journal
      Bentham Science Publishers Ltd.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose:

          To evaluate the corneal stromal demarcation line and safety of transepithelial corneal cross-linking (CXL) with supplemental oxygen in progressive keratoconus treatment.

          Methods:

          This is a retrospective review of 25 patients with progressive keratoconus who underwent epithelial-on CXL with supplemental oxygen from December 2019 to February 2022. Outcomes measured include corneal stromal demarcation line depth, volume of cornea treated, endothelial cell count, best-corrected visual acuity, keratometric parameters and post-treatment adverse events.

          Results:

          25 eyes of 25 patients were included and mean age was 28.3 years. Mean follow-up period was 11.5 ± 1.39 months. Pre-operatively, mean ± standard deviation (SD) of K1, K2, Kmax and minimal corneal thickness were 45.9D ± 3.79D, 50.2D ± 4.83D, 57.5D ± 6.98D and 482.3um ± 36.8um respectively. There is no significant difference between pre and post-treatment corneal topographic parameters. There was improvement in BCVA post-treatment. The mean post-treatment corneal stromal demarcation line depth was 367.3 ± 89.8um. The volume of treated cornea including the central corneal epithelial thickness was 73.3 ± 4.39%. There was no reduction in endothelial cell count (ECC) post-procedure (pre-treatment mean ECC±SD: 2695.4 ± 224.5 cells/mm 2, post-treatment ECC 2730.1 ± 252.0 cells/mm 2, p-value = 0.33). Post-treatment corneal haze was mild and seen in 8 patients postoperatively. One patient developed a non-visual axis involving stromal infiltrate that resolved with topical broad-spectrum anti-microbials.

          Conclusion:

          Trans-epithelial CXL with supplemental oxygen for keratoconus treatment achieved comparable corneal stromal demarcation line depth comparable to that of conventional epithelial-off corneal cross-linking and had a similar safety profile.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Keratoconus

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results.

              To report the refractive, topographic, and clinical outcomes 3 years after corneal collagen cross-linking (CXL) in eyes with progressive keratoconus. Prospective, randomized controlled trial. One hundred eyes with progressive keratoconus were randomized into the CXL treatment or control groups. Cross-linking was performed by instilling riboflavin 0.1% solution containing 20% dextran for 15 minutes before and during the 30 minutes of ultraviolet A irradiation (3 mW/cm(2)). Follow-up examinations were arranged at 3, 6, 12, 24, and 36 months. The primary outcome measure was the maximum simulated keratometry value (Kmax). Other outcome measures were uncorrected visual acuity (UCVA; measured in logarithm of the minimum angle of resolution [logMAR] units), best spectacle-corrected visual acuity (BSCVA; measured in logMAR units), sphere and cylinder on subjective refraction, spherical equivalent, minimum simulated keratometry value, corneal thickness at the thinnest point, endothelial cell density, and intraocular pressure. The results from 48 control and 46 treated eyes are reported. In control eyes, Kmax increased by a mean of 1.20±0.28 diopters (D), 1.70±0.36 D, and 1.75±0.38 D at 12, 24, and 36 months, respectively (all P <0.001). In treated eyes, Kmax flattened by -0.72±0.15 D, -0.96±0.16 D, and -1.03±0.19 D at 12, 24, and 36 months, respectively (all P <0.001). The mean change in UCVA in the control group was +0.10±0.04 logMAR (P = 0.034) at 36 months. In the treatment group, both UCVA (-0.15±0.06 logMAR; P = 0.009) and BSCVA (-0.09±0.03 logMAR; P = 0.006) improved at 36 months. There was a significant reduction in corneal thickness measured using computerized videokeratography in both groups at 36 months (control group: -17.01±3.63 μm, P <0.001; treatment group: -19.52±5.06 μm, P <0.001) that was not observed in the treatment group using the manual pachymeter (treatment group: +5.86±4.30 μm, P = 0.181). The manifest cylinder increased by 1.17±0.49 D (P = 0.020) in the control group at 36 months. There were 2 eyes with minor complications that did not affect the final visual acuity. At 36 months, there was a sustained improvement in Kmax, UCVA, and BSCVA after CXL, whereas eyes in the control group demonstrated further progression. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                The Open Ophthalmology Journal
                TOOPHTJ
                Bentham Science Publishers Ltd.
                1874-3641
                August 30 2022
                August 30 2022
                : 16
                : 1
                Article
                10.2174/18743641-v16-e2207130
                071f24b9-f6db-404d-b942-7b451e0af424
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Medicine,Chemistry,Life sciences
                Medicine, Chemistry, Life sciences

                Comments

                Comment on this article