28
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of eight novel full-length genomes of SARS-CoV-2 among imported COVID-19 cases from abroad in Yunnan, China

      letter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dear Editor: Recent correspondence in this Journal has highlighted the current threat posed by recently-emerging corona virus disease 2019 (COVID-19) in the world. 1 The COVID-19 is infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is characterized by fever, dry cough, weak, and so on. 2 , 3 SARS-CoV-2 has already caused a global pandemic. By 26 Apr, 2020, the spread of SARS-CoV-2 has led to more than 3.0 million infections and above 200,000 deaths; 4 thus, its outbreak has become a global public health problem. Recently, COVID-19 epidemic in China has been well controlled, whereas the risk of imported COVID-19 cases has increased dramatically. 5 As of April 26, 2020, a total of 1,636 abroad imported patients were reported in China. 6 However, limited studies on full-length genome characterization of SARS-CoV-2 from COVID-19 cases imported from abroad. Here, we characterized the genotype and mutation characteristics of SARS-CoV-2 isolated from eight imported cases from abroad in Yunnan, China. Eight COVID-19 patients imported from overseas were admitted to Yunnan Provincial Infectious Disease Hospital from March 15, 2020 to March 26, 2020. The epidemiological history and respiratory symptoms of the eight patients were summarized in Figure 1 A and 1B. The 8 patients include 4 males and 4 females, with ages ranging from 6 years to 70 years old. No patient has ever been to Wuhan city in China. Two cases YN_Im01 and YN_Im03 were from Spain to Yunnan, YN_Im02 from France, YN_Im04 from Cambodia, YN_Im05 from Sri Lanka, and YN_Im06-08, a family cluster of COVID-19 patients from the United States (Fig. 1A). Six cases showed different degrees of respiratory symptoms before hospitalization. YN_Im06 was severe, YN_Im01, YN_Im05, YN_Im07, and YN_Im08 were moderate, YN_Im02 was mild, and YN_Im03 and YN_Im04 were asymptomatic according to the latest COVID-19 diagnostic criteria (5th edition) published by the National Health Commission of China (Fig. 1B). Figure 1 Maps of the study region, epidemiological characteristics, phylogenetic analysis based on the complete genome sequences of the SARS-CoV-2 from eight COVID-19 cases imported from abroad in Yunnan, China. (A) Eight cases of imported SARS-CoV-2 infection in travelers returning to Yunnan from overseas in 2020. (B) Demographic characteristics and respiratory symptoms. (C) Maximum-likelihood tree based on the complete SARS-CoV-2 genomic sequence obtained from positive serum samples was constructed using IQ-tree software. The genotypes of SARS-CoV-2 were divided into G, S, V and other. Virus clades are shown at right. Figure 1 Fig. 2 . Figure 2 Nucleotide and amino acid substitution differences across the whole genome among clades G, V, S and other strains. Nucleotide and amino acid positions are numbered with a reference to SARS-CoV-2 strain Wuhan-Hu-1 identified earliest in Wuhan seafood market, in Hubei, China. Figure 2 So far, three main clades involving G, V, and S have been identified based on marker mutations in the complete SARS-CoV-2 genome according to the latest genotyping rules recommended by the GISAID databas. 7 G clade containing D614G variant in S protein is predominant in Europe, V clade possessing G251V mutation in ORF3 is more common in Asia and Europe, and S clade having L84S substitution in ORF8 is move prevalent in North America. 8 In this study, eight complete genome sequences of SARS-CoV-2 isolated from sputum samples were successfully amplified and sequenced with 38 overlapping fragments. Dataset comprise SARS-CoV-2 full-length sequences of representative clade G, V, and S as previously reported, and reference sequences with the highest similarity (12 sequences) based on BLAST in Genbank using the eight sequences obtained in this study as the query set. Further, phylogenetic trees for SARS-CoV-2 full-length nucleotide sequences were constructed based on the obtained datasets with the maximum-likelihood method using IQ-tree. Phylogenetic analyses revealed that the six isolates, including one from France (YN_Im02), two from Spain (YN_Im01 and YN_Im03), and three from the United States (YN_Im06-08) were clustered as G clade with a high bootstrap value of 99%, one strain from Cambodia (YN_Im04) was grouped into S clade with a bootstrap value of 80%, and the remaining one from Sri Lanka was classified within other clade, a large unclassified sequences because lack the signature variants (Fig. 1C). Of note, the three sequences YN_Im06-08 isolated from a family cluster of SARS-CoV-2 infection formed a close monophyletic subclade supported by a bootstrap value of 100% and had 99.99% nucleotide identity, indicating the three sequences originate from the same strain. To further characterize the characteristics of virus variation, the sequence analyses based on SARS-CoV-2 full-length nucleotide and amino acid sequences was performed using the strain Wuhan-Hu-1 (Genbank no. NC_045512) identified earliest in Wuhan seafood market, in Hubei, China as the reference strain for nucleotide and amino acid positions. 9 The results revealed that 15, 12 and 10 nucleotide mutations to clades G, S, and other, respectively, were mapped across the SARS-CoV-2 full-length genome. Corresponding to these nucleotide substitutions, 8, 6, and 5 non-synonymous amino acid substitutions were detected in clades G, S, and other, respectively. Of note, all clade G strains possessed another P4715L marker substitution in nsp12 besides the signature mutation D614G variant in S protein. YN_Im05 strain belonging to other clade have a unique 3-nucleotide deletion between 518 and 520 nt that was not found in G and S clades, leading to a methionine deletion at position 58 in leader protein. Moreover, three novel mutations, including D1962V in nsp3 from the strain YN_Im03, L1375F in nsp3 and A829T in S protein from the isolate YN_Im04 were first identified in this study according to the comparison with 11,231 genomic sequences available at GISAID on 4/26/2020.10 Interestingly, S23T and R203W mutations located in N protein were identified in the three isolates from a family cluster of SARS-CoV-2 infection. Given that the three COVID-19 patients were diagnosed on the same day and the viruses originated from the same strain, indicated that the strain is replicating and mutating rapidly in different individuals. In summary, we characterized the full-length genomes of SARS-CoV-2 strains from eight COVID-19 cases imported from abroad in Yunnan, China. Our results showed that the predominant SARS-CoV-2 clade was G (6 cases), followed by S clade (one case) and unclassified clade (one case). Further, comparative genomic analyses revealed that a novel signature amino acid substitution P4715L in nsp12 was found in the G clade strains. Moreover, three novel mutations, including D1962V in nsp3, L1375F in nsp3, and A829T in S protein were first identified in this study. The present study highlights the urgent need for continuous molecular screening and epidemic surveillance for SARS-CoV-2 among COVID-19 individuals imported from abroad to prevent future outbreaks of SARS-CoV-2 infection in China. Declaration of Competing Interest The authors declare no competing financial interests.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study

          Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A new coronavirus associated with human respiratory disease in China

            Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel coronavirus outbreak of global health concern

              In December, 2019, Wuhan, Hubei province, China, became the centre of an outbreak of pneumonia of unknown cause, which raised intense attention not only within China but internationally. Chinese health authorities did an immediate investigation to characterise and control the disease, including isolation of people suspected to have the disease, close monitoring of contacts, epidemiological and clinical data collection from patients, and development of diagnostic and treatment procedures. By Jan 7, 2020, Chinese scientists had isolated a novel coronavirus (CoV) from patients in Wuhan. The genetic sequence of the 2019 novel coronavirus (2019-nCoV) enabled the rapid development of point-of-care real-time RT-PCR diagnostic tests specific for 2019-nCoV (based on full genome sequence data on the Global Initiative on Sharing All Influenza Data [GISAID] platform). Cases of 2019-nCoV are no longer limited to Wuhan. Nine exported cases of 2019-nCoV infection have been reported in Thailand, Japan, Korea, the USA, Vietnam, and Singapore to date, and further dissemination through air travel is likely.1, 2, 3, 4, 5 As of Jan 23, 2020, confirmed cases were consecutively reported in 32 provinces, municipalities, and special administrative regions in China, including Hong Kong, Macau, and Taiwan. 3 These cases detected outside Wuhan, together with the detection of infection in at least one household cluster—reported by Jasper Fuk-Woo Chan and colleagues 6 in The Lancet—and the recently documented infections in health-care workers caring for patients with 2019-nCoV indicate human-to-human transmission and thus the risk of much wider spread of the disease. As of Jan 23, 2020, a total of 835 cases with laboratory-confirmed 2019-nCoV infection have been detected in China, of whom 25 have died and 93% remain in hospital (figure ). 3 Figure Timeline of early stages of 2019-nCoV outbreak 2019-nCoV=2019 novel coronavirus. In The Lancet, Chaolin Huang and colleagues 7 report clinical features of the first 41 patients admitted to the designated hospital in Wuhan who were confirmed to be infected with 2019-nCoV by Jan 2, 2020. The study findings provide first-hand data about severity of the emerging 2019-nCoV infection. Symptoms resulting from 2019-nCoV infection at the prodromal phase, including fever, dry cough, and malaise, are non-specific. Unlike human coronavirus infections, upper respiratory symptoms are notably infrequent. Intestinal presentations observed with SARS also appear to be uncommon, although two of six cases reported by Chan and colleagues had diarrhoea. 6 Common laboratory findings on admission to hospital include lymphopenia and bilateral ground-glass opacity or consolidation in chest CT scans. These clinical presentations confounded early detection of infected cases, especially against a background of ongoing influenza and circulation of other respiratory viruses. Exposure history to the Huanan Seafood Wholesale market served as an important clue at the early stage, yet its value has decreased as more secondary and tertiary cases have appeared. Of the 41 patients in this cohort, 22 (55%) developed severe dyspnoea and 13 (32%) required admission to an intensive care unit, and six died. 7 Hence, the case-fatality proportion in this cohort is approximately 14·6%, and the overall case fatality proportion appears to be closer to 3% (table ). However, both of these estimates should be treated with great caution because not all patients have concluded their illness (ie, recovered or died) and the true number of infections and full disease spectrum are unknown. Importantly, in emerging viral infection outbreaks the case-fatality ratio is often overestimated in the early stages because case detection is highly biased towards the more severe cases. As further data on the spectrum of mild or asymptomatic infection becomes available, one case of which was documented by Chan and colleagues, 6 the case-fatality ratio is likely to decrease. Nevertheless, the 1918 influenza pandemic is estimated to have had a case-fatality ratio of less than 5% 13 but had an enormous impact due to widespread transmission, so there is no room for complacency. Table Characteristics of patients who have been infected with 2019-nCoV, MERS-CoV, and SARS-CoV7, 8, 10, 11, 12 2019-nCoV * MERS-CoV SARS-CoV Demographic Date December, 2019 June, 2012 November, 2002 Location of first detection Wuhan, China Jeddah, Saudi Arabia Guangdong, China Age, years (range) 49 (21–76) 56 (14–94) 39·9 (1–91) Male:female sex ratio 2·7:1 3·3:1 1:1·25 Confirmed cases 835† 2494 8096 Mortality 25† (2·9%) 858 (37%) 744 (10%) Health-care workers 16‡ 9·8% 23·1% Symptoms Fever 40 (98%) 98% 99–100% Dry cough 31 (76%) 47% 29–75% Dyspnoea 22 (55%) 72% 40–42% Diarrhoea 1 (3%) 26% 20–25% Sore throat 0 21% 13–25% Ventilatory support 9·8% 80% 14–20% Data are n, age (range), or n (%) unless otherwise stated. 2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus. * Demographics and symptoms for 2019-nCoV infection are based on data from the first 41 patients reported by Chaolin Huang and colleagues (admitted before Jan 2, 2020). 8 Case numbers and mortalities are updated up to Jan 21, 2020) as disclosed by the Chinese Health Commission. † Data as of Jan 23, 2020. ‡ Data as of Jan 21, 2020. 9 As an RNA virus, 2019-nCoV still has the inherent feature of a high mutation rate, although like other coronaviruses the mutation rate might be somewhat lower than other RNA viruses because of its genome-encoded exonuclease. This aspect provides the possibility for this newly introduced zoonotic viral pathogen to adapt to become more efficiently transmitted from person to person and possibly become more virulent. Two previous coronavirus outbreaks had been reported in the 21st century. The clinical features of 2019-nCoV, in comparison with SARS-CoV and Middle East respiratory syndrome (MERS)-CoV, are summarised in the table. The ongoing 2019-nCoV outbreak has undoubtedly caused the memories of the SARS-CoV outbreak starting 17 years ago to resurface in many people. In November, 2002, clusters of pneumonia of unknown cause were reported in Guangdong province, China, now known as the SARS-CoV outbreak. The number of cases of SARS increased substantially in the next year in China and later spread globally, 14 infecting at least 8096 people and causing 774 deaths. 12 The international spread of SARS-CoV in 2003 was attributed to its strong transmission ability under specific circumstances and the insufficient preparedness and implementation of infection control practices. Chinese public health and scientific capabilities have been greatly transformed since 2003. An efficient system is ready for monitoring and responding to infectious disease outbreaks and the 2019-nCoV pneumonia has been quickly added to the Notifiable Communicable Disease List and given the highest priority by Chinese health authorities. The increasing number of cases and widening geographical spread of the disease raise grave concerns about the future trajectory of the outbreak, especially with the Chinese Lunar New Year quickly approaching. Under normal circumstances, an estimated 3 billion trips would be made in the Spring Festival travel rush this year, with 15 million trips happening in Wuhan. The virus might further spread to other places during this festival period and cause epidemics, especially if it has acquired the ability to efficiently transmit from person to person. Consequently, the 2019-nCoV outbreak has led to implementation of extraordinary public health measures to reduce further spread of the virus within China and elsewhere. Although WHO has not recommended any international travelling restrictions so far, 15 the local government in Wuhan announced on Jan 23, 2020, the suspension of public transportation, with closure of airports, railway stations, and highways in the city, to prevent further disease transmission. 16 Further efforts in travel restriction might follow. Active surveillance for new cases and close monitoring of their contacts are being implemented. To improve detection efficiency, front-line clinics, apart from local centres for disease control and prevention, should be armed with validated point-of-care diagnostic kits. Rapid information disclosure is a top priority for disease control and prevention. A daily press release system has been established in China to ensure effective and efficient disclosure of epidemic information. Education campaigns should be launched to promote precautions for travellers, including frequent hand-washing, cough etiquette, and use of personal protection equipment (eg, masks) when visiting public places. Also, the general public should be motivated to report fever and other risk factors for coronavirus infection, including travel history to affected area and close contacts with confirmed or suspected cases. Considering that substantial numbers of patients with SARS and MERS were infected in health-care settings, precautions need to be taken to prevent nosocomial spread of the virus. Unfortunately, 16 health-care workers, some of whom were working in the same ward, have been confirmed to be infected with 2019-nCoV to date, although the routes of transmission and the possible role of so-called super-spreaders remain to be clarified. 9 Epidemiological studies need to be done to assess risk factors for infection in health-care personnel and quantify potential subclinical or asymptomatic infections. Notably, the transmission of SARS-CoV was eventually halted by public health measures including elimination of nosocomial infections. We need to be wary of the current outbreak turning into a sustained epidemic or even a pandemic. The availability of the virus' genetic sequence and initial data on the epidemiology and clinical consequences of the 2019-nCoV infections are only the first steps to understanding the threat posed by this pathogen. Many important questions remain unanswered, including its origin, extent, and duration of transmission in humans, ability to infect other animal hosts, and the spectrum and pathogenesis of human infections. Characterising viral isolates from successive generations of human infections will be key to updating diagnostics and assessing viral evolution. Beyond supportive care, 17 no specific coronavirus antivirals or vaccines of proven efficacy in humans exist, although clinical trials of both are ongoing for MERS-CoV and one controlled trial of ritonavir-boosted lopinavir monotherapy has been launched for 2019-nCoV (ChiCTR2000029308). Future animal model and clinical studies should focus on assessing the effectiveness and safety of promising antiviral drugs, monoclonal and polyclonal neutralising antibody products, and therapeutics directed against immunopathologic host responses. We have to be aware of the challenge and concerns brought by 2019-nCoV to our community. Every effort should be given to understand and control the disease, and the time to act is now. This online publication has been corrected. The corrected version first appeared at thelancet.com on January 29, 2020
                Bookmark

                Author and article information

                Contributors
                Journal
                J Infect
                J. Infect
                The Journal of Infection
                Published by Elsevier Ltd on behalf of The British Infection Association.
                0163-4453
                1532-2742
                15 May 2020
                15 May 2020
                Affiliations
                [a ]Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
                [b ]Clinical Laboratory, Yunnan Provincial Infectious Disease Hospital, Kunming, China
                [c ]Yunnan SCISpark Medical Laboratory, Yunnan SCISpark Biotech Co.,Ltd, Kunming, China
                [d ]Infectious Diseases Division II, Yunnan Provincial Infectious Disease Hospital, Kunming, China
                [e ]Faculty of Life Science and Technology, Kunming University of Science and Technology & Yunnan SCISpark Medical Laboratory, Yunnan SCISpark Biotech Co.,Ltd, Kunming, China
                [f ]Yunnan Provincial Infectious Disease Hospital, Kunming, China
                Author notes
                [* ]Corresponding author: Tel.: +86 65920756; fax: +86 65920562. fyky2005@ 123456kust.com.cn dongxq8001@ 123456126.com oliverxia2000@ 123456aliyun.com
                [#]

                These first authors contributed equally in this work

                Article
                S0163-4453(20)30291-7
                10.1016/j.jinf.2020.05.016
                7228736
                32417310
                070e0eae-adb1-48ca-b3ef-5d30e1d17d34
                © 2020 Published by Elsevier Ltd on behalf of The British Infection Association.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article