174
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-performance green flexible electronics based on biodegradable cellulose nanofibril paper

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.

          Abstract

          The rapid evolution of consumer electronics means that out-of-date devices quickly end up in the scrap heap. Here, the authors fabricate electrical components using biodegradable and flexible cellulose nanofibril paper—a natural sustainable resource derived from wood.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          A physically transient form of silicon electronics.

          A remarkable feature of modern silicon electronics is its ability to remain physically invariant, almost indefinitely for practical purposes. Although this characteristic is a hallmark of applications of integrated circuits that exist today, there might be opportunities for systems that offer the opposite behavior, such as implantable devices that function for medically useful time frames but then completely disappear via resorption by the body. We report a set of materials, manufacturing schemes, device components, and theoretical design tools for a silicon-based complementary metal oxide semiconductor (CMOS) technology that has this type of transient behavior, together with integrated sensors, actuators, power supply systems, and wireless control strategies. An implantable transient device that acts as a programmable nonantibiotic bacteriocide provides a system-level example.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paper electronics.

            Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              E-waste: an assessment of global production and environmental impacts.

              E-waste comprises discarded electronic appliances, of which computers and mobile telephones are disproportionately abundant because of their short lifespan. The current global production of E-waste is estimated to be 20-25 million tonnes per year, with most E-waste being produced in Europe, the United States and Australasia. China, Eastern Europe and Latin America will become major E-waste producers in the next ten years. Miniaturisation and the development of more efficient cloud computing networks, where computing services are delivered over the internet from remote locations, may offset the increase in E-waste production from global economic growth and the development of pervasive new technologies. E-waste contains valuable metals (Cu, platinum group) as well as potential environmental contaminants, especially Pb, Sb, Hg, Cd, Ni, polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). Burning E-waste may generate dioxins, furans, polycyclic aromatic hydrocarbons (PAHs), polyhalogenated aromatic hydrocarbons (PHAHs), and hydrogen chloride. The chemical composition of E-waste changes with the development of new technologies and pressure from environmental organisations on electronics companies to find alternatives to environmentally damaging materials. Most E-waste is disposed in landfills. Effective reprocessing technology, which recovers the valuable materials with minimal environmental impact, is expensive. Consequently, although illegal under the Basel Convention, rich countries export an unknown quantity of E-waste to poor countries, where recycling techniques include burning and dissolution in strong acids with few measures to protect human health and the environment. Such reprocessing initially results in extreme localised contamination followed by migration of the contaminants into receiving waters and food chains. E-waste workers suffer negative health effects through skin contact and inhalation, while the wider community are exposed to the contaminants through smoke, dust, drinking water and food. There is evidence that E-waste associated contaminants may be present in some agricultural or manufactured products for export.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                26 May 2015
                2015
                : 6
                : 7170
                Affiliations
                [1 ]Department of Electrical and Computer Engineering, University of Wisconsin–Madison , 1415 Engineering Drive, 3445 Engineering Hall, Madison, Wisconsin 53706, USA
                [2 ]Department of Material Sciences and Engineering, University of Wisconsin–Madison , Madison, Wisconsin 53706, USA
                [3 ]Forest Products Laboratory, USDA Forest Service , Madison, Wisconsin 53726, USA
                [4 ]School of Electronic Engineering, University of Electronic Science and Technology of China , Chengdu 611731, China
                [5 ]Department of Electrical Engineering, University of Texas-Arlington , Arlington, Texas 76019, USA
                [6 ]Department of Biomedical Engineering and Wisconsin Institutes for Discovery, University of Wisconsin–Madison , Madison, Wisconsin 53706, USA
                Author notes
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-1754-2602
                Article
                ncomms8170
                10.1038/ncomms8170
                4455139
                26006731
                070b2021-53ad-46e9-a45d-7eb21a05a764
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 January 2015
                : 13 April 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article