56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      First Report of Colonies of Sylvatic Triatoma infestans (Hemiptera: Reduviidae) in the Paraguayan Chaco, Using a Trained Dog

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the Gran Chaco region, control of Triatoma infestans has been limited by persistent domestic infestations despite the efforts of the Vector Control Services. In Paraguay, this region is the highest endemic area in the country, showing high levels of indoor and outdoor infestation. Although sylvatic T. infestans have been found in the Bolivian and Argentine Chaco, similar searches for sylvatic populations of this species in Paraguay had been unsuccessful over the last 20 years. Here we present a new approach to detecting sylvatic Triatominae, using a trained dog, which has successfully confirmed sylvatic populations of T. infestans and other triatomine species in Paraguay. A total of 22 specimens corresponding to dark morph forms of T. infestans were collected, and 14 were confirmed as T. infestans by the mitochondrial cytochrome B gene analysis. Through this analysis, one of which were previously reported and a second that was a new haplotype. Triatomines were captured from amongst vegetation such as dry branches and hollows trees of different species such Aspidosperma quebracho-blanco, Bulnesia sarmientoi and Stetsonia coryne. The colonies found have been small and without apparent infection with Trypanosoma cruzi. During the study, Triatoma sordida and Triatoma guasayana have also been found in ecotopes close to those of T. infestans.

          Author Summary

          Confirmation of sylvatic colonies of Triatoma infestans has a significant connotation for Paraguay. Prior to our findings, we believed this vector —unlike in other regions of the Gran Chaco—was living exclusively in domestic and peridomestic habitats. We never considered the possibility of sylvatic species re-infesting domiciliary dwellings. After this discovery, the frame of transmission dynamics of Trypanosoma cruzi in the Paraguayan Chaco proposes new research perspectives. This also opens the door to promote knowledge regarding potential genetic flows between different T. infestans populations, reservoirs associated with their colonies, as well as their impact over control actions. Fieldwork for wild species identification is difficult and often unsuccessful, we used several techniques and tools, proven by others such as light traps, and mouse-baited sticky traps however, the triatomine collection in our study area was scarce or null. Incorporating a trained dog – NERO – to our work team has been a highly successful and productive initiative. The surprising ability NERO has shown will enable us to provide specific data regarding the still unknown wild ecotopes of T. infestans, as well as the potential use of trained dogs as a community surveillance tool of triatomine species considered particularly important for public health.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids.

          Trypanosoma cruzi, the causative agent of Chagas disease, has at least two principal intraspecific subdivisions, T. cruzi I (TCI) and T. cruzi II (TCII), the latter containing up to five subgroups (a-e). Whilst it is known that TCI predominates from the Amazon basin northwards and TCII to the South, where the disease is considered to be clinically more severe, the precise clinical and evolutionary significance of these divisions remains enigmatic. Here, we present compelling evidence of an association between TCI and opossums (Didelphis), and TCII and armadillos, on the basis of key new findings from the Paraguayan Chaco region, together with a comprehensive analysis of historical data. We suggest that the distinct arboreal and terrestrial ecologies, respectively, of these mammal hosts provide a persuasive explanation for the extant T. cruzi intraspecific diversity in South America, and for separate origins of Chagas disease in northern South America and in the southern cone countries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Trypanosoma cruzi: adaptation to its vectors and its hosts

            American trypanosomiasis is a parasitic zoonosis that occurs throughout Latin America. The etiological agent, Trypanosoma cruzi, is able to infect almost all tissues of its mammalian hosts and spreads in the environment in multifarious transmission cycles that may or not be connected. This biological plasticity, which is probably the result of the considerable heterogeneity of the taxon, exemplifies a successful adaptation of a parasite resulting in distinct outcomes of infection and a complex epidemiological pattern. In the 1990s, most endemic countries strengthened national control programs to interrupt the transmission of this parasite to humans. However, many obstacles remain to the effective control of the disease. Current knowledge of the different components involved in elaborate system that is American trypanosomiasis (the protozoan parasite T. cruzi, vectors Triatominae and the many reservoirs of infection), as well as the interactions existing within the system, is still incomplete. The Triatominae probably evolve from predatory reduvids in response to the availability of vertebrate food source. However, the basic mechanisms of adaptation of some of them to artificial ecotopes remain poorly understood. Nevertheless, these adaptations seem to be associated with a behavioral plasticity, a reduction in the genetic repertoire and increasing developmental instability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Sustainability of vector control strategies in the Gran Chaco Region: current challenges and possible approaches

              Sustainability has become a focal point of the international agenda. At the heart of its range of distribution in the Gran Chaco Region, the elimination of Triatoma infestans has failed, even in areas subject to intensive professional vector control efforts. Chagas disease control programs traditionally have been composed of two divorced entities: a vector control program in charge of routine field operations (bug detection and insecticide spraying) and a disease control program in charge of screening blood donors, diagnosis, etiologic treatment and providing medical care to chronic patients. The challenge of sustainable suppression of bug infestation and Trypanosoma cruzi transmission can be met through integrated disease management, in which vector control is combined with active case detection and treatment to increase impact, cost-effectiveness and public acceptance in resource-limited settings. Multi-stakeholder involvement may add sustainability and resilience to the surveillance system. Chagas vector control and disease management must remain a regional effort within the frame of sustainable development rather than being viewed exclusively as a matter of health pertinent to the health sector. Sustained and continuous coordination between governments, agencies, control programs, academia and the affected communities is critical.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                May 2011
                3 May 2011
                : 5
                : 5
                : e1026
                Affiliations
                [1]Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial/Fundación Moisés Bertoni), Asunción, Paraguay
                IRD/CIRDES, Burkina Faso
                Author notes

                Conceived and designed the experiments: MR MCV ARdA. Performed the experiments: MR MCV FR AG ARdA. Analyzed the data: MR MCV ARdA. Contributed reagents/materials/analysis tools: ARdA. Wrote the paper: MR MCV ARdA.

                Article
                PNTD-D-10-00137
                10.1371/journal.pntd.0001026
                3086807
                21572522
                06fbc158-9883-46d3-bc3d-56a2381006c0
                Rolón et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 October 2010
                : 16 February 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Ecology
                Community Ecology
                Species Interactions
                Biodiversity
                Zoology
                Entomology
                Parasitology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article