3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      FTO Inhibition Enhances the Antitumor Effect of Temozolomide by Targeting MYC-miR-155/23a Cluster-MXI1 Feedback Circuit in Glioma

      , , , , , ,
      Cancer Research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: target recognition and regulatory functions.

          MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            N6-Methyladenosine in Nuclear RNA is a Major Substrate of the Obesity-Associated FTO

            We report here that FTO (fat mass and obesity-associated protein) exhibits efficient oxidative demethylation activity of abundant N 6-methyladenosine (m6A) residues in RNA in vitro. FTO knockdown with siRNA led to an increased level of m6A in mRNA, whereas overexpression of FTO resulted in a decreased level of m6A in human cells. We further show that FTO partially colocalizes with nuclear speckles, supporting m6A in nuclear RNA as a physiological substrate of FTO.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers

              Cellular RNAs are naturally decorated with a variety of chemical modifications. The structural diversity of the modified nucleosides provides regulatory potential to sort groups of RNAs for organized metabolism and functions, thus affecting gene expression. Recent years have witnessed a burst of interest in and understanding of RNA modification biology, thanks to the emerging transcriptome-wide sequencing methods for mapping modified sites, highly-sensitive mass spectrometry for precise modification detection and quantification, and extensive characterization of the modification “effectors”, including enzymes (“writers” and “erasers”) that alter the modification level and binding proteins (“readers”) that recognize the chemical marks. However, challenges remain due to the vast heterogeneity in expression abundance of different RNA species, further complicated by divergent cell-type-specific and tissue-specific expression and localization of the effectors as well as modifications. In this review, we highlight recent progress in understanding the function of N 6 -methyladenosine (m 6 A), the most abundant internal mark on eukaryotic messenger RNA (mRNA), in light of the specific biological contexts of m 6 A effectors. We emphasize the importance of context for RNA modification regulation and function. RNA N 6 -methyladenosine (m 6 A) has emerged as a multifaceted controller for gene expression regulation, mediated through its effector proteins—writers, readers, and erasers. Shi et al . review recent advances in the mechanistic understandings of m 6 A effectors in various biological systems and cellular responses, emphasizing cellular and molecular contexts as important determinants of RNA modification functions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cancer Research
                Cancer Res
                American Association for Cancer Research (AACR)
                0008-5472
                1538-7445
                September 15 2020
                September 15 2020
                September 15 2020
                July 17 2020
                : 80
                : 18
                : 3945-3958
                Article
                10.1158/0008-5472.CAN-20-0132
                32680921
                06d75f68-d337-4377-9b39-251dd8d701de
                © 2020
                History

                Comments

                Comment on this article