8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The unc-47 locus of Caenorhabditis elegans has been suggested to encode a synaptic vesicle GABA transporter. Here we used hydropathy plot analysis to identify a candidate vesicular GABA transporter in genomic sequences derived from a region of the physical map comprising unc-47. A mouse homologue was identified and cloned from EST database information. In situ hybridization in rat brain revealed codistribution with both GABAergic and glycinergic neuronal markers. Moreover, expression in COS-7 and PC12 cells induced an intracellular, glycine-sensitive GABA uptake activity. These observations, consistent with previous data on GABA and glycine uptake by synaptic vesicles, demonstrate that the mouse clone encodes a vesicular inhibitory amino acid transporter.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.

          We have devised a simple and efficient cDNA cloning strategy that overcomes many of the difficulties encountered in obtaining full-length cDNA clones of low-abundance mRNAs. In essence, cDNAs are generated by using the DNA polymerase chain reaction technique to amplify copies of the region between a single point in the transcript and the 3' or 5' end. The minimum information required for this amplification is a single short stretch of sequence within the mRNA to be cloned. Since the cDNAs can be produced in one day, examined by Southern blotting the next, and readily cloned, large numbers of full-length cDNA clones of rare transcripts can be rapidly produced. Moreover, separation of amplified cDNAs by gel electrophoresis allows precise selection by size prior to cloning and thus facilitates the isolation of cDNAs representing variant mRNAs, such as those produced by alternative splicing or by the use of alternative promoters. The efficacy of this method was demonstrated by isolating cDNA clones of mRNA from int-2, a mouse gene that expresses four different transcripts at low abundance, the longest of which is approximately 2.9 kilobases. After less than 0.05% of the cDNAs produced had been screened, 29 independent int-2 clones were isolated. Sequence analysis demonstrated that the 3' and 5' ends of all four int-2 mRNAs were accurately represented by these clones.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            dbEST--database for "expressed sequence tags".

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complementary DNA sequencing: expressed sequence tags and human genome project

              Automated partial DNA sequencing was conducted on more than 600 randomly selected human brain complementary DNA (cDNA) clones to generate expressed sequence tags (ESTs). ESTs have applications in the discovery of new human genes, mapping of the human genome, and identification of coding regions in genomic sequences. Of the sequences generated, 337 represent new genes, including 48 with significant similarity to genes from other organisms, such as a yeast RNA polymerase II subunit; Drosophila kinesin, Notch, and Enhancer of split; and a murine tyrosine kinase receptor. Forty-six ESTs were mapped to chromosomes after amplification by the polymerase chain reaction. This fast approach to cDNA characterization will facilitate the tagging of most human genes in a few years at a fraction of the cost of complete genomic sequencing, provide new genetic markers, and serve as a resource in diverse biological research fields.
                Bookmark

                Author and article information

                Journal
                FEBS Letters
                Elsevier BV
                00145793
                November 10 1997
                November 10 1997
                November 25 1997
                : 417
                : 2
                : 177-183
                Article
                10.1016/S0014-5793(97)01279-9
                9395291
                06a5e76f-ad3d-47c8-b092-abe002f66317
                © 1997

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article