3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of pH on the antimicrobial activity of the macrophage metabolite itaconate

      1 , 2 , 3 , 2 , 3 , 1
      Microbiology
      Microbiology Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The production of itaconate by macrophages was only discovered in 2011. An increasing number of studies have since revealed essential biological functions for this small molecule, ranging from antimicrobial to immunomodulator. The antibacterial role of itaconate has however been questioned because the estimated concentration of itaconate in macrophages (low-millimolar) is lower than the minimum inhibitory concentration (MIC) of itaconate reported for several bacterial strains (low-to-mid-millimolar). We note that some of these investigations have tended to ignore the high acidity of this small diacid (pKas 3.85 and 5.45), thereby potentially biassing activity measurements. We measured the MIC of itaconate in Escherichia coli (not known to metabolize itaconate) and in Salmonella enterica serovar Typhimurium (known to metabolize itaconate) at varying pH values to probe the effect that pH has on itaconate toxicity. Herein, we demonstrate that the antimicrobial effect of itaconate is dependent upon the pH of the media and that itaconate does have antimicrobial activity at biologically relevant pH and concentrations. Under nutrient-poor conditions, the antimicrobial activity of itaconate in both E. coli and S. Typhimurium increased approximately 200-fold when the pH was dropped by one unit, whereas itaconate was not found to be toxic under nutrient rich conditions. Our results also reveal that the activity of itaconate is synergistic with acidity, yet is not a function of increased permeability with protonation. Similar experiments performed with succinate (a pKa-matched diacid) yielded drastically different results, consistent with a target-based mechanism of action for itaconate. Overall, our work shows the importance of controlling the pH when performing experiments with itaconic acid.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1

          The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation.

            Remodeling of the tricarboxylic acid (TCA) cycle is a metabolic adaptation accompanying inflammatory macrophage activation. During this process, endogenous metabolites can adopt regulatory roles that govern specific aspects of inflammatory response, as recently shown for succinate, which regulates the pro-inflammatory IL-1β-HIF-1α axis. Itaconate is one of the most highly induced metabolites in activated macrophages, yet its functional significance remains unknown. Here, we show that itaconate modulates macrophage metabolism and effector functions by inhibiting succinate dehydrogenase-mediated oxidation of succinate. Through this action, itaconate exerts anti-inflammatory effects when administered in vitro and in vivo during macrophage activation and ischemia-reperfusion injury. Using newly generated Irg1(-/-) mice, which lack the ability to produce itaconate, we show that endogenous itaconate regulates succinate levels and function, mitochondrial respiration, and inflammatory cytokine production during macrophage activation. These studies highlight itaconate as a major physiological regulator of the global metabolic rewiring and effector functions of inflammatory macrophages.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Synergy, antagonism, and what the chequerboard puts between them.

              F C Odds (2003)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Microbiology
                Microbiology Society
                1350-0872
                1465-2080
                May 21 2021
                May 21 2021
                : 167
                : 5
                Affiliations
                [1 ] Department of Chemistry, McGill University, Montreal, Quebec, Canada
                [2 ] McGill International TB Centre, McGill University, Montreal, Quebec, Canada
                [3 ] Department of Medicine, McGill University, Montreal, Quebec, Canada
                Article
                10.1099/mic.0.001050
                34090328
                06986be2-c6c9-4cb4-b040-0a791ead3055
                © 2021
                History

                Comments

                Comment on this article