Survival analysis is used to analyze data from patients who are followed for different periods of time and in whom the outcome of interest, a dichotomous event, may or may not have occurred at the time the study is halted; data from all patients are used in the analysis, including data from patients who dropped out, regardless of the duration of follow-up. This article discusses basic concepts in survival analysis, explains technical terms such as censoring, and provides reasons why ordinary methods of analysis cannot be applied to such data. The Kaplan-Meier survival curve is described, as is the Cox proportional hazards regression and the hazard ratio. Supplementary information includes a data file, graphs with explanations, and additional discussions; these are provided to enhance the reader’s experience and understanding.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.