0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial dysfunction in cumulus cells is related to decreased reproductive capacity in advanced-age women

      , , , , , , , ,
      Fertility and Sterility
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          ESHRE consensus on the definition of 'poor response' to ovarian stimulation for in vitro fertilization: the Bologna criteria.

          The definition presented here represents the first realistic attempt by the scientific community to standardize the definition of poor ovarian response (POR) in a simple and reproducible manner. POR to ovarian stimulation usually indicates a reduction in follicular response, resulting in a reduced number of retrieved oocytes. It has been recognized that, in order to define the poor response in IVF, at least two of the following three features must be present: (i) advanced maternal age or any other risk factor for POR; (ii) a previous POR; and (iii) an abnormal ovarian reserve test (ORT). Two episodes of POR after maximal stimulation are sufficient to define a patient as poor responder in the absence of advanced maternal age or abnormal ORT. By definition, the term POR refers to the ovarian response, and therefore, one stimulated cycle is considered essential for the diagnosis of POR. However, patients of advanced age with an abnormal ORT may be classified as poor responders since both advanced age and an abnormal ORT may indicate reduced ovarian reserve and act as a surrogate of ovarian stimulation cycle outcome. In this case, the patients should be more properly defined as 'expected poor responder'. If this definition of POR is uniformly adapted as the 'minimal' criteria needed to select patients for future clinical trials, more homogeneous populations will be tested for any new protocols. Finally, by reducing bias caused by spurious POR definitions, it will be possible to compare results and to draw reliable conclusions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic regulation of cell growth and proliferation

            Cellular metabolism is at the foundation of all biological activities. The catabolic processes that support cellular bioenergetics and survival have been well studied. By contrast, how cells alter their metabolism to support anabolic biomass accumulation is less well understood. During the commitment to cell proliferation, extensive metabolic rewiring must occur in order for cells to acquire sufficient nutrients such as glucose, amino acids, lipids and nucleotides that are necessary to support cell growth, and to deal with the redox challenges that arise from the increased metabolic activity associated with anabolic processes. Defining the mechanisms of this metabolic adaptation for cell growth and proliferation is now a major focus of research. Understanding the principles that guide anabolic metabolism may ultimately enhance ways to treat diseases that involve deregulated cell growth and proliferation, such as cancer. Cell proliferation is associated with substantial rewiring of metabolism to support extensive need for macromolecule biosynthesis. Better understanding of how cells acquire and utilize nutrients for biosynthetic pathways and how they cope with metabolic challenges linked to high rates of proliferation will lead to improved cancer treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.

              Oocyte quality is a key limiting factor in female fertility, yet we have a poor understanding of what constitutes oocyte quality or the mechanisms governing it. The ovarian follicular microenvironment and maternal signals, mediated primarily through granulosa cells (GCs) and cumulus cells (CCs), are responsible for nurturing oocyte growth, development and the gradual acquisition of oocyte developmental competence. However, oocyte-GC/CC communication is bidirectional with the oocyte secreting potent growth factors that act locally to direct the differentiation and function of CCs. Two important oocyte-secreted factors (OSFs) are growth-differentiation factor 9 and bone morphogenetic protein 15, which activate signaling pathways in CCs to regulate key genes and cellular processes required for CC differentiation and for CCs to maintain their distinctive phenotype. Hence, oocytes appear to tightly control their neighboring somatic cells, directing them to perform functions required for appropriate development of the oocyte. This oocyte-CC regulatory loop and the capacity of oocytes to regulate their own microenvironment by OSFs may constitute important components of oocyte quality. In support of this notion, it has recently been demonstrated that supplementing oocyte in vitro maturation (IVM) media with exogenous OSFs improves oocyte developmental potential, as evidenced by enhanced pre- and post-implantation embryo development. This new perspective on oocyte-CC interactions is improving our knowledge of the processes regulating oocyte quality, which is likely to have a number of applications, including improving the efficiency of clinical IVM and thereby providing new options for the treatment of infertility.
                Bookmark

                Author and article information

                Journal
                Fertility and Sterility
                Fertility and Sterility
                Elsevier BV
                00150282
                August 2022
                August 2022
                : 118
                : 2
                : 393-404
                Article
                10.1016/j.fertnstert.2022.04.019
                35637023
                065b3931-0528-4ed6-b690-c125eeb5547b
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article