4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The determination of drug residence times, which define the time an inhibitor is in complex with its target, is a fundamental part of the drug discovery process. Synthesis and experimental measurements of kinetic rate constants are, however, expensive and time consuming. In this work, we aimed to obtain drug residence times computationally. Furthermore, we propose a novel algorithm to identify molecular design objectives based on ligand unbinding kinetics. We designed an enhanced sampling technique to accurately predict the free-energy profiles of the ligand unbinding process, focusing on the free-energy barrier for unbinding. Our method first identifies unbinding paths determining a corresponding set of internal coordinates (ICs) that form contacts between the protein and the ligand; it then iteratively updates these interactions during a series of biased molecular dynamics (MD) simulations to reveal the ICs that are important for the whole of the unbinding process. Subsequently, we performed finite-temperature string simulations to obtain the free-energy barrier for unbinding using the set of ICs as a complex reaction coordinate. Importantly, we also aimed to enable the further design of drugs focusing on improved residence times. To this end, we developed a supervised machine learning (ML) approach with inputs from unbiased “downhill” trajectories initiated near the transition state (TS) ensemble of the string unbinding path. We demonstrate that our ML method can identify key ligand–protein interactions driving the system through the TS. Some of the most important drugs for cancer treatment are kinase inhibitors. One of these kinase targets is cyclin-dependent kinase 2 (CDK2), an appealing target for anticancer drug development. Here, we tested our method using two different CDK2 inhibitors for the potential further development of these compounds. We compared the free-energy barriers obtained from our calculations with those observed in available experimental data. We highlighted important interactions at the distal ends of the ligands that can be targeted for improved residence times. Our method provides a new tool to determine unbinding rates and to identify key structural features of the inhibitors that can be used as starting points for novel design strategies in drug discovery.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Development and testing of a general amber force field.

          We describe here a general Amber force field (GAFF) for organic molecules. GAFF is designed to be compatible with existing Amber force fields for proteins and nucleic acids, and has parameters for most organic and pharmaceutical molecules that are composed of H, C, N, O, S, P, and halogens. It uses a simple functional form and a limited number of atom types, but incorporates both empirical and heuristic models to estimate force constants and partial atomic charges. The performance of GAFF in test cases is encouraging. In test I, 74 crystallographic structures were compared to GAFF minimized structures, with a root-mean-square displacement of 0.26 A, which is comparable to that of the Tripos 5.2 force field (0.25 A) and better than those of MMFF 94 and CHARMm (0.47 and 0.44 A, respectively). In test II, gas phase minimizations were performed on 22 nucleic acid base pairs, and the minimized structures and intermolecular energies were compared to MP2/6-31G* results. The RMS of displacements and relative energies were 0.25 A and 1.2 kcal/mol, respectively. These data are comparable to results from Parm99/RESP (0.16 A and 1.18 kcal/mol, respectively), which were parameterized to these base pairs. Test III looked at the relative energies of 71 conformational pairs that were used in development of the Parm99 force field. The RMS error in relative energies (compared to experiment) is about 0.5 kcal/mol. GAFF can be applied to wide range of molecules in an automatic fashion, making it suitable for rational drug design and database searching. Copyright 2004 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.

            Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple small adjustments of φ and ψ parameters were tested against NMR scalar coupling data and secondary structure content for short peptides. The best results were obtained from a physically motivated adjustment to the φ rotational profile that compensates for lack of ff99SB QM training data in the β-ppII transition region. Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution. We also discuss the Amber ff12SB parameter set, a preliminary version of ff14SB that includes most of its improvements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scalable molecular dynamics with NAMD.

              NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This article, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Finally, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, for example, the Tcl scripting language. The article also provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. (c) 2005 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                J Chem Theory Comput
                J Chem Theory Comput
                ct
                jctcce
                Journal of Chemical Theory and Computation
                American Chemical Society
                1549-9618
                1549-9626
                23 February 2022
                12 April 2022
                : 18
                : 4
                : 2543-2555
                Affiliations
                []Department of Chemistry, King’s College London , London SE1 1DB, United Kingdom
                []Department of Physics and Astronomy, University College London , London WC1E 6BT, United Kingdom
                [§ ]Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
                []Department of Physics, King’s College London , London WC2R 2LS, United Kingdom
                []School of Computer Science, University of Lincoln , Lincoln LN6 7TS, United Kingdom
                Author notes
                Author information
                https://orcid.org/0000-0002-8299-3784
                https://orcid.org/0000-0003-4013-6394
                https://orcid.org/0000-0002-2344-9586
                https://orcid.org/0000-0002-0402-2376
                https://orcid.org/0000-0002-9823-4766
                Article
                10.1021/acs.jctc.1c00924
                9097281
                35195418
                061a8224-b27b-49cb-a7bf-cc00d92101a8
                © 2022 American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 15 September 2021
                Funding
                Funded by: H2020 European Research Council, doi 10.13039/100010663;
                Award ID: 757850 BioNet
                Funded by: Engineering and Physical Sciences Research Council, doi 10.13039/501100000266;
                Award ID: EP/R013012/1
                Categories
                Article
                Custom metadata
                ct1c00924
                ct1c00924

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content66

                Cited by10

                Most referenced authors2,648