62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep mineral water accelerates recovery after dehydrating aerobic exercise: a randomized, double-blind, placebo-controlled crossover study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The effect of deep mineral water (DMW) with moderate mineralization on the recovery of physical performance after prolonged dehydrating aerobic exercise in the heat was studied in nine healthy, physically active (VO 2max = 45.8 ± 8.4 mL kg −1 min −1) women aged 24.0 ± 3.7 years.

          Methods

          We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of ingestion of natural mineral water extracted from a depth of 689 m on recovery from prolonged fatiguing aerobic running conducted at 30°C.

          Results

          Mean body weight decreased by 2.6–2.8% following dehydrating exercise. VO 2max was 9% higher after 4 h of recovery after rehydrating with DMW compared with plain water. Leg muscle power recovered better during the slow phase of recovery and was significantly higher after 48 h of recovery after rehydrating with DMW compared with plain water.

          Conclusions

          DMW with moderate mineralization was more effective in inducing recovery of aerobic capacity and leg muscle power compared with plain water following prolonged dehydrating aerobic running exercise.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Neuromuscular function after exercise-induced muscle damage: theoretical and applied implications.

          Exercise-induced muscle damage is a well documented phenomenon particularly resulting from eccentric exercise. When eccentric exercise is unaccustomed or is performed with an increased intensity or duration, the symptoms associated with muscle damage are a common outcome and are particularly associated with participation in athletic activity. Muscle damage results in an immediate and prolonged reduction in muscle function, most notably a reduction in force-generating capacity, which has been quantified in human studies through isometric and dynamic isokinetic testing modalities. Investigations of the torque-angular velocity relationship have failed to reveal a consistent pattern of change, with inconsistent reports of functional change being dependent on the muscle action and/or angular velocity of movement. The consequences of damage on dynamic, multi-joint, sport-specific movements would appear more pertinent with regard to athletic performance, but this aspect of muscle function has been studied less often. Reductions in the ability to generate power output during single-joint movements as well as during cycling and vertical jump movements have been documented. In addition, muscle damage has been observed to increase the physiological demand of endurance exercise and to increase thermal strain during exercise in the heat. The aims of this review are to summarise the functional decrements associated with exercise-induced muscle damage, relate these decrements to theoretical views regarding underlying mechanisms (i.e. sarcomere disruption, impaired excitation-contraction coupling, preferential fibre type damage, and impaired muscle metabolism), and finally to discuss the potential impact of muscle damage on athletic performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluid and fuel intake during exercise.

            The amounts of water, carbohydrate and salt that athletes are advised to ingest during exercise are based upon their effectiveness in attenuating both fatigue as well as illness due to hyperthermia, dehydration or hyperhydration. When possible, fluid should be ingested at rates that most closely match sweating rate. When that is not possible or practical or sufficiently ergogenic, some athletes might tolerate body water losses amounting to 2% of body weight without significant risk to physical well-being or performance when the environment is cold (e.g. 5-10 degrees C) or temperate (e.g. 21-22 degrees C). However, when exercising in a hot environment ( > 30 degrees C), dehydration by 2% of body weight impairs absolute power production and predisposes individuals to heat injury. Fluid should not be ingested at rates in excess of sweating rate and thus body water and weight should not increase during exercise. Fatigue can be reduced by adding carbohydrate to the fluids consumed so that 30-60 g of rapidly absorbed carbohydrate are ingested throughout each hour of an athletic event. Furthermore, sodium should be included in fluids consumed during exercise lasting longer than 2 h or by individuals during any event that stimulates heavy sodium loss (more than 3-4 g of sodium). Athletes do not benefit by ingesting glycerol, amino acids or alleged precursors of neurotransmitter. Ingestion of other substances during exercise, with the possible exception of caffeine, is discouraged. Athletes will benefit the most by tailoring their individual needs for water, carbohydrate and salt to the specific challenges of their sport, especially considering the environment's impact on sweating and heat stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement tools used in the study of eccentric contraction-induced injury.

              The objective of this review is to evaluate the measurement tools currently used in the study of eccentric contraction-induced muscle injury, with emphasis on their usefulness for quantifying the magnitude and duration of the injury and as indicators of muscle functional deficits. In studies in humans, it was concluded that measurements of maximal voluntary contraction torque and range of motion provide the best methods for quantifying muscle injury. Similarly, in animal studies, the in vitro measurement of electrically elicited force under isometric conditions was considered to be the best of the measurement tools currently in use. For future studies, more effort should be put into measuring other contractile parameters (e.g. force/torque-velocity and force/torque-length relationships maximal shortening velocity and fatigue susceptibility) that may reflect injury-induced functional impairments. The use of histology, ratings of soreness and the measurement of blood or bath levels of myofibre proteins should be discouraged for purposes of quantifying muscle injury and/or functional impairment.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Int Soc Sports Nutr
                J Int Soc Sports Nutr
                Journal of the International Society of Sports Nutrition
                BioMed Central
                1550-2783
                2014
                26 June 2014
                : 11
                : 34
                Affiliations
                [1 ]Lithuanian Sports University, Kaunas, Lithuania
                Article
                1550-2783-11-34
                10.1186/1550-2783-11-34
                4083353
                06168513-b3f2-4c24-81e7-62e62a21703b
                Copyright © 2014 Stasiule et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 7 February 2014
                : 20 June 2014
                Categories
                Research Article

                Sports medicine
                deep mineral water,rehydration,aerobic capacity,leg muscle power,recovery,women
                Sports medicine
                deep mineral water, rehydration, aerobic capacity, leg muscle power, recovery, women

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content271

                Cited by10

                Most referenced authors342