7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vaccination and the risk of systemic lupus erythematosus: a meta-analysis of observational studies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          This meta-analysis aims to explore the potential link between vaccines and systemic lupus erythematosus (SLE).

          Methods

          We systematically searched PubMed, Cochrane Library, and Embase for observational studies from inception to September 3, 2023, using medical subject headings (MeSH) and keywords. Study quality was assessed using the NOS scale. Statistical analyses were conducted using STATA software (version 14.0). Publication bias was evaluated using funnel plots and Egger’s regression.

          Results

          The meta-analysis incorporated 17 studies, encompassing 45,067,349 individuals with follow-up periods ranging from 0.5 to 2 years. The pooled analysis revealed no significant association between vaccinations and an increased risk of SLE [OR = 1.14, 95% CI (0.86–1.52), I 2 = 78.1%, P = 0.348]. Subgroup analyses indicated that HBV vaccination was significantly associated with an elevated risk of SLE [OR =2.11, 95% CI (1.11-4.00), I 2 = 63.3%, P = 0.02], HPV vaccination was slightly associated with an increased risk of SLE [OR = 1.43, 95% CI (0.88–2.31), I 2 = 72.4%, P = 0.148], influenza vaccination showed no association with an increased risk of SLE [OR = 0.96, 95% CI (0.82–1.12), I 2 = 0.0%, P = 0.559], and COVID-19 vaccine was marginally associated with a decreased risk of SLE [OR = 0.44, 95% CI (0.18–1.21), I 2 = 91.3%, P = 0.118].

          Conclusions

          This study suggests that vaccinations are not linked to an increased risk of SLE. Our meta-analysis results provide valuable insights, alleviating concerns about SLE risk post-vaccination and supporting further vaccine development efforts.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13075-024-03296-8.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables.

            This article is the first of a series providing guidance for use of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system of rating quality of evidence and grading strength of recommendations in systematic reviews, health technology assessments (HTAs), and clinical practice guidelines addressing alternative management options. The GRADE process begins with asking an explicit question, including specification of all important outcomes. After the evidence is collected and summarized, GRADE provides explicit criteria for rating the quality of evidence that include study design, risk of bias, imprecision, inconsistency, indirectness, and magnitude of effect. Recommendations are characterized as strong or weak (alternative terms conditional or discretionary) according to the quality of the supporting evidence and the balance between desirable and undesirable consequences of the alternative management options. GRADE suggests summarizing evidence in succinct, transparent, and informative summary of findings tables that show the quality of evidence and the magnitude of relative and absolute effects for each important outcome and/or as evidence profiles that provide, in addition, detailed information about the reason for the quality of evidence rating. Subsequent articles in this series will address GRADE's approach to formulating questions, assessing quality of evidence, and developing recommendations. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GRADE guidelines: 3. Rating the quality of evidence.

              This article introduces the approach of GRADE to rating quality of evidence. GRADE specifies four categories-high, moderate, low, and very low-that are applied to a body of evidence, not to individual studies. In the context of a systematic review, quality reflects our confidence that the estimates of the effect are correct. In the context of recommendations, quality reflects our confidence that the effect estimates are adequate to support a particular recommendation. Randomized trials begin as high-quality evidence, observational studies as low quality. "Quality" as used in GRADE means more than risk of bias and so may also be compromised by imprecision, inconsistency, indirectness of study results, and publication bias. In addition, several factors can increase our confidence in an estimate of effect. GRADE provides a systematic approach for considering and reporting each of these factors. GRADE separates the process of assessing quality of evidence from the process of making recommendations. Judgments about the strength of a recommendation depend on more than just the quality of evidence. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                xzj575@163.com
                chengpw2010@126.com
                Journal
                Arthritis Res Ther
                Arthritis Res Ther
                Arthritis Research & Therapy
                BioMed Central (London )
                1478-6354
                1478-6362
                4 March 2024
                4 March 2024
                2024
                : 26
                : 60
                Affiliations
                Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, ( https://ror.org/04epb4p87) Binwen Road, Binjiang Dsitrict, Hangzhou, China
                Article
                3296
                10.1186/s13075-024-03296-8
                10910799
                38433222
                05f5ca77-0112-4508-9c7c-03bf9eb39196
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 3 January 2024
                : 26 February 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81973829
                Award ID: 82374395
                Funded by: Zhejiang Province Scientific Research Project of Traditional Chinese Medicine
                Award ID: 2021ZA063
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Orthopedics
                vaccination,systemic lupus erythematosus,risk,meta-analysis
                Orthopedics
                vaccination, systemic lupus erythematosus, risk, meta-analysis

                Comments

                Comment on this article