15
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atmospheric phosphorus deposition amplifies carbon sinks in simulations of a tropical forest in Central Africa

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          • Spatial redistribution of nutrients by atmospheric transport and deposition could theoretically act as a continental‐scale mechanism which counteracts declines in soil fertility caused by nutrient lock‐up in accumulating biomass in tropical forests in Central Africa. However, to what extent it affects carbon sinks in forests remains elusive.

          • Here we use a terrestrial biosphere model to quantify the impact of changes in atmospheric nitrogen and phosphorus deposition on plant nutrition and biomass carbon sink at a typical lowland forest site in Central Africa.

          • We find that the increase in nutrient deposition since the 1980s could have contributed to the carbon sink over the past four decades up to an extent which is similar to that from the combined effects of increasing atmospheric carbon dioxide and climate change. Furthermore, we find that the modelled carbon sink responds to changes in phosphorus deposition, but less so to nitrogen deposition.

          • The pronounced response of ecosystem productivity to changes in nutrient deposition illustrates a potential mechanism that could control carbon sinks in Central Africa. Monitoring the quantity and quality of nutrient deposition is needed in this region, given the changes in nutrient deposition due to human land use.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          A large and persistent carbon sink in the world's forests.

          The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 ± 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 ± 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 ± 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 ± 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 ± 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Global fire emissions estimates during 1997–2016

              Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED) and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA) biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1) new burned area estimates with contributions from small fires, (2) a revised fuel consumption parameterization optimized using field observations, (3) modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4) fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25°) and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s) were 2.2  ×  10 15  grams of carbon per year (Pg C yr −1 ) during 1997–2016, with a maximum in 1997 (3.0 Pg C yr −1 ) and minimum in 2013 (1.8 Pg C yr −1 ). These estimates were 11 % higher than our previous estimates (GFED3) during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %), mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 %) to better match estimates from field studies, primarily in savannas and grasslands. For trace gas and aerosol emissions, differences between GFED4s and GFED3 were often larger due to the use of revised emission factors. If small fire burned area was excluded (GFED4 without the s for small fires), average emissions were 1.5 Pg C yr −1 . The addition of small fires had the largest impact on emissions in temperate North America, Central America, Europe, and temperate Asia. This small fire layer carries substantial uncertainties; improving these estimates will require use of new burned area products derived from high-resolution satellite imagery. Our revised dataset provides an internally consistent set of burned area and emissions that may contribute to a better understanding of multi-decadal changes in fire dynamics and their impact on the Earth system. GFED data are available from http://www.globalfiredata.org .
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                New Phytologist
                New Phytologist
                Wiley
                0028-646X
                1469-8137
                March 2023
                November 30 2022
                March 2023
                : 237
                : 6
                : 2054-2068
                Affiliations
                [1 ] Laboratoire des Sciences du Climat et de l'Environnement, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS Université de Versailles Saint‐Quentin, Université Paris Saclay Gif‐sur‐Yvette 91190 France
                [2 ] Isotope Bioscience Laboratory–ISOFYS Ghent University Ghent 9000 Belgium
                [3 ] Department of Environment, Computational and Applied Vegetation Ecology – CAVElab Ghent University Ghent 9000 Belgium
                [4 ] Department Geoscience, Environment & Society Université Libre de Bruxelles Bruxelles 1050 Belgium
                [5 ] Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention Fudan University Shanghai 200438 China
                [6 ] Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health Fudan University Shanghai 200438 China
                [7 ] Department of Atmospheric and Oceanic Sciences Institute of Atmospheric Sciences Fudan University Shanghai 200438 China
                [8 ] Center for Urban Eco‐Planning & Design Fudan University Shanghai 200438 China
                [9 ] Big Data Institute for Carbon Emission and Environmental Pollution Fudan University Shanghai 200438 China
                Article
                10.1111/nph.18535
                36226674
                05df7e7e-3104-41f8-83ad-05dcd85320ce
                © 2023

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article