38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Illusion of Owning a Third Arm

      research-article
      * , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Could it be possible that, in the not-so-distant future, we will be able to reshape the human body so as to have extra limbs? A third arm helping us out with the weekly shopping in the local grocery store, or an extra artificial limb assisting a paralysed person? Here we report a perceptual illusion in which a rubber right hand, placed beside the real hand in full view of the participant, is perceived as a supernumerary limb belonging to the participant's own body. This effect was supported by questionnaire data in conjunction with physiological evidence obtained from skin conductance responses when physically threatening either the rubber hand or the real one. In four well-controlled experiments, we demonstrate the minimal required conditions for the elicitation of this “supernumerary hand illusion”. In the fifth, and final experiment, we show that the illusion reported here is qualitatively different from the traditional rubber hand illusion as it is characterised by less disownership of the real hand and a stronger feeling of having two right hands. These results suggest that the artificial hand ‘borrows’ some of the multisensory processes that represent the real hand, leading to duplication of touch and ownership of two right arms. This work represents a major advance because it challenges the traditional view of the gross morphology of the human body as a fundamental constraint on what we can come to experience as our physical self, by showing that the body representation can easily be updated to incorporate an additional limb.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Brain-machine interfaces: past, present and future.

          Since the original demonstration that electrical activity generated by ensembles of cortical neurons can be employed directly to control a robotic manipulator, research on brain-machine interfaces (BMIs) has experienced an impressive growth. Today BMIs designed for both experimental and clinical studies can translate raw neuronal signals into motor commands that reproduce arm reaching and hand grasping movements in artificial actuators. Clearly, these developments hold promise for the restoration of limb mobility in paralyzed subjects. However, as we review here, before this goal can be reached several bottlenecks have to be passed. These include designing a fully implantable biocompatible recording device, further developing real-time computational algorithms, introducing a method for providing the brain with sensory feedback from the actuators, and designing and building artificial prostheses that can be controlled directly by brain-derived signals. By reaching these milestones, future BMIs will be able to drive and control revolutionary prostheses that feel and act like the human arm.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas.

            In the "rubber-hand illusion," the sight of brushing of a rubber hand at the same time as brushing of the person's own hidden hand is sufficient to produce a feeling of ownership of the fake hand. We shown previously that this illusion is associated with activity in the multisensory areas, most notably the ventral premotor cortex (Ehrsson et al., 2004). However, it remains to be demonstrated that this illusion does not simply reflect the dominant role of vision and that the premotor activity does not reflect a visual representation of an object near the hand. To address these issues, we introduce a somatic rubber-hand illusion. The experimenter moved the blindfolded participant's left index finger so that it touched the fake hand, and simultaneously, he touched the participant's real right hand, synchronizing the touches as perfectly as possible. After approximately 9.7 s, this stimulation elicited an illusion that one was touching one's own hand. We scanned brain activity during this illusion and two control conditions, using functional magnetic resonance imaging. Activity in the ventral premotor cortices, intraparietal cortices, and the cerebellum was associated with the illusion of touching one's own hand. Furthermore, the rated strength of the illusion correlated with the degree of premotor and cerebellar activity. This finding suggests that the activity in these areas reflects the detection of congruent multisensory signals from one's own body, rather than of visual representations. We propose that this could be the mechanism for the feeling of body ownership.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the other hand: dummy hands and peripersonal space.

              Where are my hands? The brain can answer this question using sensory information arising from vision, proprioception, or touch. Other sources of information about the position of our hands can be derived from multisensory interactions (or potential interactions) with our close environment, such as when we grasp or avoid objects. The pioneering study of multisensory representations of peripersonal space was published in Behavioural Brain Research almost 30 years ago [Rizzolatti G, Scandolara C, Matelli M, Gentilucci M. Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 1981;2:147-63]. More recently, neurophysiological, neuroimaging, neuropsychological, and behavioural studies have contributed a wealth of evidence concerning hand-centred representations of objects in peripersonal space. This evidence is examined here in detail. In particular, we focus on the use of artificial dummy hands as powerful instruments to manipulate the brain's representation of hand position, peripersonal space, and of hand ownership. We also review recent studies of the 'rubber hand illusion' and related phenomena, such as the visual capture of touch, and the recalibration of hand position sense, and discuss their findings in the light of research on peripersonal space. Finally, we propose a simple model that situates the 'rubber hand illusion' in the neurophysiological framework of multisensory hand-centred representations of space.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                23 February 2011
                : 6
                : 2
                : e17208
                Affiliations
                [1]Brain, Body and Self Laboratory, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
                City of Hope National Medical Center and Beckman Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: AG VIP HHE. Performed the experiments: AG. Analyzed the data: AG VIP. Wrote the paper: AG VIP HHE.

                Article
                PONE-D-10-04890
                10.1371/journal.pone.0017208
                3044173
                21383847
                05c98243-aa31-496a-bb95-815d452eec8f
                Guterstam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 8 November 2010
                : 25 January 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Neuroscience
                Sensory Perception
                Psychophysics
                Cognitive Neuroscience
                Medicine
                Mental Health
                Psychology
                Psychophysics
                Social and Behavioral Sciences
                Psychology
                Experimental Psychology
                Psychophysics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article