157
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biology of the RANKL–RANK–OPG System in Immunity, Bone, and Beyond

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Discovery and characterization of the cytokine receptor-cytokine-decoy receptor triad formed by receptor activator of nuclear factor kappa-B ligand (RANKL)–receptor activator of NF-κB (RANK)–osteoprotegerin (OPG) have led not only to immense advances in understanding the biology of bone homeostasis, but have also crystalized appreciation of the critical regulatory relationship that exists between bone and immunity, resulting in the emergence of the burgeoning field of osteoimmunology. RANKL–RANK–OPG are members of the tumor necrosis factor (TNF) and TNF receptor superfamilies, and share signaling characteristics common to many members of each. Developmentally regulated and cell-type specific expression patterns of each of these factors have revealed key regulatory functions for RANKL–RANK–OPG in bone homeostasis, organogenesis, immune tolerance, and cancer. Successful efforts at designing and developing therapeutic agents targeting RANKL–RANK–OPG have been undertaken for osteoporosis, and additional efforts are underway for other conditions. In this review, we will summarize the basic biology of the RANKL–RANK–OPG system, relate its cell-type specific functions to system-wide mechanisms of development and homeostasis, and highlight emerging areas of interest for this cytokine group.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.

          Osteoclasts, the multinucleated cells that resorb bone, develop from hematopoietic cells of monocyte/macrophage lineage. Osteoclast-like cells (OCLs) are formed by coculturing spleen cells with osteoblasts or bone marrow stromal cells in the presence of bone-resorbing factors. The cell-to-cell interaction between osteoblasts/stromal cells and osteoclast progenitors is essential for OCL formation. Recently, we purified and molecularly cloned osteoclastogenesis-inhibitory factor (OCIF), which was identical to osteoprotegerin (OPG). OPG/OCIF is a secreted member of the tumor necrosis factor receptor family and inhibits osteoclastogenesis by interrupting the cell-to-cell interaction. Here we report the expression cloning of a ligand for OPG/OCIF from a complementary DNA library of mouse stromal cells. The protein was found to be a member of the membrane-associated tumor necrosis factor ligand family and induced OCL formation from osteoclast progenitors. A genetically engineered soluble form containing the extracellular domain of the protein induced OCL formation from spleen cells in the absence of osteoblasts/stromal cells. OPG/OCIF abolished the OCL formation induced by the protein. Expression of its gene in osteoblasts/stromal cells was up-regulated by bone-resorbing factors. We conclude that the membrane-bound protein is osteoclast differentiation factor (ODF), a long-sought ligand mediating an essential signal to osteoclast progenitors for their differentiation into osteoclasts. ODF was found to be identical to TRANCE/RANKL, which enhances T-cell growth and dendritic-cell function. ODF seems to be an important regulator in not only osteoclastogenesis but also immune system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling.

            Mice lacking the proto-oncogene c-fos develop the bone disease osteopetrosis. Fos mutant mice were found to have a block in the differentiation of bone-resorbing osteoclasts that was intrinsic to hematopoietic cells. Bone marrow transplantation rescued the osteopetrosis, and ectopic c-fos expression overcame this differentiation block. The lack of Fos also caused a lineage shift between osteoclasts and macrophages that resulted in increased numbers of bone marrow macrophages. These results identify Fos as a key regulator of osteoclast-macrophage lineage determination in vivo and provide insights into the molecular mechanisms underlying metabolic bone diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.

              A receptor that mediates osteoprotegerin ligand (OPGL)-induced osteoclast differentiation and activation has been identified via genomic analysis of a primary osteoclast precursor cell cDNA library and is identical to the tumor necrosis factor receptor (TNFR) family member RANK. The RANK mRNA was highly expressed by isolated bone marrow-derived osteoclast progenitors and by mature osteoclasts in vivo. Recombinant OPGL binds specifically to RANK expressed by transfected cell lines and purified osteoclast progenitors. Transgenic mice expressing a soluble RANK-Fc fusion protein have severe osteopetrosis because of a reduction in osteoclasts, similar to OPG transgenic mice. Recombinant RANK-Fc binds with high affinity to OPGL in vitro and blocks osteoclast differentiation and activation in vitro and in vivo. Furthermore, polyclonal Ab against the RANK extracellular domain promotes osteoclastogenesis in bone marrow cultures suggesting that RANK activation mediates the effects of OPGL on the osteoclast pathway. These data indicate that OPGL-induced osteoclastogenesis is directly mediated through RANK on osteoclast precursor cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 October 2014
                2014
                : 5
                : 511
                Affiliations
                [1] 1Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine , Philadelphia, PA, USA
                Author notes

                Edited by: Linda C. Burkly, Biogen Idec Inc., USA

                Reviewed by: Hiroki Yoshida, Saga University, Japan; Jaewoo Hong, National Institutes of Health, USA; Steven L. Teitelbaum, Washington University, USA

                *Correspondence: Yongwon Choi, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 421 Curie Blvd, BRBII/III RM 308, Philadelphia, PA 19104, USA e-mail: ychoi3@ 123456mail.med.upenn.edu

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology.

                Article
                10.3389/fimmu.2014.00511
                4202272
                25368616
                0598bd0e-80c7-4bf9-9e4f-6fd20ebccf00
                Copyright © 2014 Walsh and Choi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 July 2014
                : 02 October 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 138, Pages: 11, Words: 10953
                Categories
                Immunology
                Review Article

                Immunology
                osteoimmunology,traf6,trance,rankl,tnfsf11,tnfrsf11,mtecs,rheumatoid arthritis
                Immunology
                osteoimmunology, traf6, trance, rankl, tnfsf11, tnfrsf11, mtecs, rheumatoid arthritis

                Comments

                Comment on this article