54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nutritional quality and health benefits of chickpea (Cicer arietinumL.): a review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chickpea ( Cicer arietinumL.) is an important pulse crop grown and consumed all over the world, especially in the Afro-Asian countries. It is a good source of carbohydrates and protein, and protein quality is considered to be better than other pulses. Chickpea has significant amounts of all the essential amino acids except sulphur-containing amino acids, which can be complemented by adding cereals to the daily diet. Starch is the major storage carbohydrate followed by dietary fibre, oligosaccharides and simple sugars such as glucose and sucrose. Although lipids are present in low amounts, chickpea is rich in nutritionally important unsaturated fatty acids such as linoleic and oleic acids. β-Sitosterol, campesterol and stigmasterol are important sterols present in chickpea oil. Ca, Mg, P and, especially, K are also present in chickpea seeds. Chickpea is a good source of important vitamins such as riboflavin, niacin, thiamin, folate and the vitamin A precursor β-carotene. As with other pulses, chickpea seeds also contain anti-nutritional factors which can be reduced or eliminated by different cooking techniques. Chickpea has several potential health benefits, and, in combination with other pulses and cereals, it could have beneficial effects on some of the important human diseases such as CVD, type 2 diabetes, digestive diseases and some cancers. Overall, chickpea is an important pulse crop with a diverse array of potential nutritional and health benefits.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Legumes and soybeans: overview of their nutritional profiles and health effects.

          Legumes play an important role in the traditional diets of many regions throughout the world. In contrast in Western countries beans tend to play only a minor dietary role despite the fact that they are low in fat and are excellent sources of protein, dietary fiber, and a variety of micronutrients and phytochemicals. Soybeans are unique among the legumes because they are a concentrated source of isoflavones. Isoflavones have weak estrogenic properties and the isoflavone genistein influences signal transduction. Soyfoods and isoflavones have received considerable attention for their potential role in preventing and treating cancer and osteoporosis. The low breast cancer mortality rates in Asian countries and the putative antiestrogenic effects of isoflavones have fueled speculation that soyfood intake reduces breast cancer risk. The available epidemiologic data are limited and only weakly supportive of this hypothesis, however, particularly for postmenopausal breast cancer. The data suggesting that soy or isoflavones may reduce the risk of prostate cancer are more encouraging. The weak estrogenic effects of isoflavones and the similarity in chemical structure between soybean isoflavones and the synthetic isoflavone ipriflavone, which was shown to increase bone mineral density in postmenopausal women, suggest that soy or isoflavones may reduce the risk of osteoporosis. Rodent studies tend to support this hypothesis, as do the limited preliminary data from humans. Given the nutrient profile and phytochemical contribution of beans, nutritionists should make a concerted effort to encourage the public to consume more beans in general and more soyfoods in particular.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses.

            Phytosterols (plant sterols) are triterpenes that are important structural components of plant membranes, and free phytosterols serve to stabilize phospholipid bilayers in plant cell membranes just as cholesterol does in animal cell membranes. Most phytosterols contain 28 or 29 carbons and one or two carbon-carbon double bonds, typically one in the sterol nucleus and sometimes a second in the alkyl side chain. Phytostanols are a fully-saturated subgroup of phytosterols (contain no double bonds). Phytostanols occur in trace levels in many plant species and they occur in high levels in tissues of only in a few cereal species. Phytosterols can be converted to phytostanols by chemical hydrogenation. More than 200 different types of phytosterols have been reported in plant species. In addition to the free form, phytosterols occur as four types of "conjugates," in which the 3beta-OH group is esterified to a fatty acid or a hydroxycinnamic acid, or glycosylated with a hexose (usually glucose) or a 6-fatty-acyl hexose. The most popular methods for phytosterol analysis involve hydrolysis of the esters (and sometimes the glycosides) and capillary GLC of the total phytosterols, either in the free form or as TMS or acetylated derivatives. Several alternative methods have been reported for analysis of free phytosterols and intact phytosteryl conjugates. Phytosterols and phytostanols have received much attention in the last five years because of their cholesterol-lowering properties. Early phytosterol-enriched products contained free phytosterols and relatively large dosages were required to significantly lower serum cholesterol. In the last several years two spreads, one containing phytostanyl fatty-acid esters and the other phytosteryl fatty-acid esters, have been commercialized and were shown to significantly lower serum cholesterol at dosages of 1-3 g per day. The popularity of these products has caused the medical and biochemical community to focus much attention on phytosterols and consequently research activity on phytosterols has increased dramatically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamin synthesis in plants: tocopherols and carotenoids.

              Carotenoids and tocopherols are the two most abundant groups of lipid-soluble antioxidants in chloroplasts. In addition to their many functional roles in photosynthetic organisms, these compounds are also essential components of animal diets, including humans. During the past decade, a near complete set of genes required for the synthesis of both classes of compounds in photosynthetic tissues has been identified, primarily as a result of molecular genetic and biochemical genomics-based approaches in the model organisms Arabidopsis thaliana and Synechocystis sp. PCC6803. Mutant analysis and transgenic studies in these and other systems have provided important insight into the regulation, activities, integration, and evolution of individual enzymes and are already providing a knowledge base for breeding and transgenic approaches to modify the types and levels of these important compounds in agricultural crops.
                Bookmark

                Author and article information

                Journal
                British Journal of Nutrition
                Br J Nutr
                Cambridge University Press (CUP)
                0007-1145
                1475-2662
                August 23 2012
                August 23 2012
                : 108
                : S1
                : S11-S26
                Article
                10.1017/S0007114512000797
                22916806
                058f0a48-d987-4717-a2b2-08b3abfaf241
                © 2012

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article