Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The primary virulence factors of many pathogenic bacteria are secreted protein toxins which bind to glycolipid receptors on host cell surfaces. The binding specificities of three such toxins for different glycolipids, mainly from the ganglioside series, were determined by surface plasmon resonance (SPR) using a liposome capture method. Unlike microtiter plate and thin layer chromatography overlay assays, the SPR/liposome methodology allows for real time analysis of toxin binding under conditions that mimic the natural cell surface venue of these interactions and without any requirement for labeling of toxin or receptor. Compared to conventional assays, the liposome technique showed more restricted oligosaccharide specificities for toxin binding. Cholera toxin demonstrated an absolute requirement for terminal galactose and internal sialic acid residues (as in GM1) with tolerance for substitution with a second internal sialic acid (as in GD1b). Escherichia coli heat-labile enterotoxin bound to GM1 and tolerated removal or extension of the internal sialic acid residue (as in asialo-GM1 and GD1b, respectively) but not substitution of the terminal galactose of GM1. Tetanus toxin showed a requirement for two internal sialic acid residues as in GD1b. Extension of terminal galactose with a single sialic acid was tolerated to some extent. The SPR analyses also yielded rate and affinity constants which are not attainable by conventional assays. Complex binding profiles were observed in that the association and dissociation rate constants varied with toxin:receptor ratios. The sub-nanomolar affinities of cholera toxin and heat-labile enterotoxin for liposome-anchored gangliosides were attributable largely to very slow dissociation rate constants. The SPR/liposome technology should have general applicability in the study of glycolipid-protein interactions and in the evaluation of reagents designed to interfere with these interactions.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Feb 28 1997
          : 272
          : 9
          Affiliations
          [1 ] Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6. roger.mackenzie@nrc.ca
          Article
          S0021-9258(18)41240-9
          10.1074/jbc.272.9.5533
          9038159
          055171dc-4b1b-4f52-84cd-8011407a8ef4
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content115

          Cited by33