10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The RECOVAC Immune-response Study: The Immunogenicity, Tolerability, and Safety of COVID-19 Vaccination in Patients With Chronic Kidney Disease, on Dialysis, or Living With a Kidney Transplant

      research-article
      , MD, PhD 1 , , MD, PhD 2 , , MD, PhD 1 , , PhD 3 , , PhD 4 , 5 , , PhD 5 , , PhD 6 , 7 , , BSc 2 , , MSc 8 , , MD, PhD 8 , , PhD 5 , , PhD 4 , , MD 1 , 4 , , MD 3 , , PhD 8 , , MD 8 , , MSc 9 , , PhD 7 , , BSc 8 , , PhD 10 , , PhD 5 , , PhD 1 , , PhD 8 , , MD, PhD 1 , , , MD, PhD 9 , , MD, PhD 3 , RECOVAC Collaborators *
      Transplantation
      Lippincott Williams & Wilkins

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Background.

          In kidney patients COVID-19 is associated with severely increased morbidity and mortality. A comprehensive comparison of the immunogenicity, tolerability, and safety of COVID-19 vaccination in different cohorts of kidney patients and a control cohort is lacking.

          Methods.

          This investigator driven, prospective, controlled multicenter study included 162 participants with chronic kidney disease (CKD) stages G4/5 (eGFR < 30 mL/min/1.73m2), 159 participants on dialysis, 288 kidney transplant recipients, and 191 controls. Participants received 2 doses of the mRNA-1273 COVID-19 vaccine (Moderna). The primary endpoint was seroconversion.

          Results.

          Transplant recipients had a significantly lower seroconversion rate when compared with controls (56.9% versus 100%, P < 0.001), with especially mycophenolic acid, but also, higher age, lower lymphocyte concentration, lower eGFR, and shorter time after transplantation being associated with nonresponder state. Transplant recipients also showed significantly lower titers of neutralizing antibodies and T-cell responses when compared with controls. Although a high seroconversion rate was observed for participants with CKD G4/5 (100%) and on dialysis (99.4%), mean antibody concentrations in the CKD G4/5 cohort and dialysis cohort were lower than in controls (2405 [interquartile interval 1287–4524] and 1650 [698–3024] versus 3186 [1896–4911] BAU/mL, P = 0.06 and P < 0.001, respectively). Dialysis patients and especially kidney transplant recipients experienced less systemic vaccination related adverse events. No specific safety issues were noted.

          Conclusions.

          The immune response following vaccination in patients with CKD G4/5 and on dialysis is almost comparable to controls. In contrast, kidney transplant recipients have a poor response. In this latter, patient group development of alternative vaccination strategies are warranted.

          Abstract

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

            Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              OpenSAFELY: factors associated with COVID-19 death in 17 million patients

              COVID-19 has rapidly impacted on mortality worldwide. 1 There is unprecedented urgency to understand who is most at risk of severe outcomes, requiring new approaches for timely analysis of large datasets. Working on behalf of NHS England we created OpenSAFELY: a secure health analytics platform covering 40% of all patients in England, holding patient data within the existing data centre of a major primary care electronic health records vendor. Primary care records of 17,278,392 adults were pseudonymously linked to 10,926 COVID-19 related deaths. COVID-19 related death was associated with: being male (hazard ratio 1.59, 95%CI 1.53-1.65); older age and deprivation (both with a strong gradient); diabetes; severe asthma; and various other medical conditions. Compared to people with white ethnicity, black and South Asian people were at higher risk even after adjustment for other factors (HR 1.48, 1.29-1.69 and 1.45, 1.32-1.58 respectively). We have quantified a range of clinical risk factors for COVID-19 related death in the largest cohort study conducted by any country to date. OpenSAFELY is rapidly adding further patients’ records; we will update and extend results regularly.
                Bookmark

                Author and article information

                Journal
                Transplantation
                Transplantation
                TP
                Transplantation
                Lippincott Williams & Wilkins (Hagerstown, MD )
                0041-1337
                1534-6080
                09 November 2021
                April 2022
                09 November 2021
                : 106
                : 4
                : 821-834
                Affiliations
                [1 ] Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
                [2 ] Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
                [3 ] Department of Internal Medicine, Nephrology, and Transplantation, Erasmus MC Transplant Institute, Erasmus Medical Center, Rotterdam, The Netherlands.
                [4 ] Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands.
                [5 ] Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
                [6 ] Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
                [7 ] Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.
                [8 ] Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
                [9 ] Department of Nephrology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands.
                [10 ] Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
                Author notes
                Correspondence: Ron T. Gansevoort, MD, PhD, Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands. ( r.t.gansevoort@ 123456umcg.nl ).
                Article
                00025
                10.1097/TP.0000000000003983
                8942603
                34753894
                0547fccb-fc28-4de1-bc2c-d8b3a54d40f3
                Copyright © 2021 The Author(s).

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 28 August 2021
                : 22 September 2021
                : 26 September 2021
                Categories
                Original Clinical Science—General
                Custom metadata
                TRUE
                T

                Comments

                Comment on this article