13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dissociation of angiogenesis and tumorigenesis in follistatin- and activin-expressing tumors.

      Cancer research
      Activins, biosynthesis, genetics, Animals, Apoptosis, physiology, Breast Neoplasms, blood supply, metabolism, pathology, Carcinoma, Renal Cell, Cell Cycle, Cell Growth Processes, Cell Line, Tumor, Follistatin, Humans, Kidney Neoplasms, Mice, Mice, Nude, Mice, SCID, Neoplasm Transplantation, Neovascularization, Pathologic, Transfection, Transplantation, Heterologous

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The transforming growth factor-beta superfamily member activin and its antagonist, follistatin, act as a pleiotropic growth factor system that controls cell proliferation, differentiation, and apoptosis. Activin inhibits fibroblast growth factor 2-induced sprouting angiogenesis in vitro (spheroidal angiogenesis assay) and in vivo (Matrigel assay). To further study the role of the activin/follistatin system during angiogenesis and tumor progression, activin- and follistatin-expressing R30C mammary carcinoma cells were studied in mouse tumor experiments. Surprisingly, activin-expressing tumors grew much faster than follistatin-expressing tumors although they failed to induce increased angiogenesis (as evidenced by low microvessel density counts). Conversely, follistatin-expressing tumors were much smaller but had a dense network of small-diameter capillaries. Qualitative angioarchitectural analyses (mural cell recruitment, perfusion) revealed no major functional differences of the tumor neovasculature. Analysis of activin- and follistatin-expressing R30C cells identified a cell autonomous role of this system in controlling tumor cell growth. Whereas proliferation of R30C cells was not altered, follistatin-expressing R30C cells had an enhanced susceptibility to undergo apoptosis. These findings in experimental tumors are complemented by an intriguing case report of a human renal cell carcinoma that similarly shows a dissociation of angiogenesis and tumorigenesis during tumor progression. Collectively, the data shed further light into the dichotomous stimulating and inhibiting roles that the activin/follistatin system can exert during angiogenesis and tumor progression. Furthermore, the experiments provide a critical proof-of-principle example for the dissociation of angiogenesis and tumorigenesis, supporting the concept that tumor growth may not be dependent on increased angiogenesis as long as a minimal intratumoral microvessel density is maintained.

          Related collections

          Author and article information

          Comments

          Comment on this article