12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The secretion profile of mesenchymal stem cells and potential applications in treating human diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.

          Related collections

          Most cited references319

          • Record: found
          • Abstract: found
          • Article: not found

          Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.

          The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance.

            Indoleamine 2,3-dioxygenase (IDO) has immunoregulatory roles associated with tryptophan metabolism. These include counter-regulation (controlling inflammation) and acquired tolerance in T cells. Recent findings reveal that IDO can be triggered by innate responses during tumorigenesis, and also by attempted T cell activation, either spontaneous or due to immunotherapy. Here we review the current understanding of mechanisms by which IDO participates in the control of inflammation and in peripheral tolerance. Focusing on the tumor microenvironment, we examine the role of IDO in response to apoptotic cells and the impact of IDO on Treg cell function. We discuss how the counter-regulatory and tolerogenic functions of IDO can be targeted for cancer immunotherapy and present an overview of the current clinical progress in this area.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mesenchymal and haematopoietic stem cells form a unique bone marrow niche.

              The cellular constituents forming the haematopoietic stem cell (HSC) niche in the bone marrow are unclear, with studies implicating osteoblasts, endothelial and perivascular cells. Here we demonstrate that mesenchymal stem cells (MSCs), identified using nestin expression, constitute an essential HSC niche component. Nestin(+) MSCs contain all the bone-marrow colony-forming-unit fibroblastic activity and can be propagated as non-adherent 'mesenspheres' that can self-renew and expand in serial transplantations. Nestin(+) MSCs are spatially associated with HSCs and adrenergic nerve fibres, and highly express HSC maintenance genes. These genes, and others triggering osteoblastic differentiation, are selectively downregulated during enforced HSC mobilization or beta3 adrenoreceptor activation. Whereas parathormone administration doubles the number of bone marrow nestin(+) cells and favours their osteoblastic differentiation, in vivo nestin(+) cell depletion rapidly reduces HSC content in the bone marrow. Purified HSCs home near nestin(+) MSCs in the bone marrow of lethally irradiated mice, whereas in vivo nestin(+) cell depletion significantly reduces bone marrow homing of haematopoietic progenitors. These results uncover an unprecedented partnership between two distinct somatic stem-cell types and are indicative of a unique niche in the bone marrow made of heterotypic stem-cell pairs.
                Bookmark

                Author and article information

                Contributors
                shaoc@suda.edu.cn
                yfshi@suda.edu.cn
                Journal
                Signal Transduct Target Ther
                Signal Transduct Target Ther
                Signal Transduction and Targeted Therapy
                Nature Publishing Group UK (London )
                2095-9907
                2059-3635
                21 March 2022
                21 March 2022
                2022
                : 7
                : 92
                Affiliations
                [1 ]GRID grid.459328.1, ISNI 0000 0004 1758 9149, Department of Ophthalmology, , The Affiliated Hospital of Jiangnan University, ; 214000 Wuxi, China
                [2 ]GRID grid.263761.7, ISNI 0000 0001 0198 0694, The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, , Medical College of Soochow University, ; 215000 Suzhou, China
                [3 ]GRID grid.6530.0, ISNI 0000 0001 2300 0941, Department of Experimental Medicine, TOR, , University of Rome Tor Vergata, ; 00133 Roma, Italy
                [4 ]GRID grid.419457.a, ISNI 0000 0004 1758 0179, IDI-IRCCS, ; 00166 Rome, Italy
                [5 ]GRID grid.459328.1, ISNI 0000 0004 1758 9149, Department of Medical Oncology, , The Affiliated Hospital of Jiangnan University, ; 214000 Wuxi, China
                Author information
                http://orcid.org/0000-0003-2618-9342
                http://orcid.org/0000-0001-8964-319X
                Article
                932
                10.1038/s41392-022-00932-0
                8935608
                35314676
                04a86017-0d0f-41d0-9eb7-531200f52242
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 January 2021
                : 18 November 2021
                : 20 February 2022
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81930085
                Award ID: 31961133024
                Award Recipient :
                Funded by: National Key R&D Program of China (2018YFA0107500) Project of State Key Laboratory of Radiation Medicine and Protection, Soochow University (No. GZN1201903)
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2022

                mesenchymal stem cells,inflammation
                mesenchymal stem cells, inflammation

                Comments

                Comment on this article