5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Predicting and mapping fire susceptibility is a top research priority in fire-prone forests worldwide. This study evaluates the abilities of the Bayes Network (BN), Naïve Bayes (NB), Decision Tree (DT), and Multivariate Logistic Regression (MLP) machine learning methods for the prediction and mapping fire susceptibility across the Pu Mat National Park, Nghe An Province, Vietnam. The modeling methodology was formulated based on processing the information from the 57 historical fires and a set of nine spatially explicit explanatory variables, namely elevation, slope degree, aspect, average annual temperate, drought index, river density, land cover, and distance from roads and residential areas. Using the area under the receiver operating characteristic curve (AUC) and seven other performance metrics, the models were validated in terms of their abilities to elucidate the general fire behaviors in the Pu Mat National Park and to predict future fires. Despite a few differences between the AUC values, the BN model with an AUC value of 0.96 was dominant over the other models in predicting future fires. The second best was the DT model (AUC = 0.94), followed by the NB (AUC = 0.939), and MLR (AUC = 0.937) models. Our robust analysis demonstrated that these models are sufficiently robust in response to the training and validation datasets change. Further, the results revealed that moderate to high levels of fire susceptibilities are associated with ~19% of the Pu Mat National Park where human activities are numerous. This study and the resultant susceptibility maps provide a basis for developing more efficient fire-fighting strategies and reorganizing policies in favor of sustainable management of forest resources.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Fire in the Earth system.

          Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Large wildfire trends in the western United States, 1984-2011

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions

              Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003–2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km2. Gross emissions from forest fires (989 ± 504 Tg CO2 year−1) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SYMMAM
                Symmetry
                Symmetry
                MDPI AG
                2073-8994
                June 2020
                June 17 2020
                : 12
                : 6
                : 1022
                Article
                10.3390/sym12061022
                0488f191-508e-4841-9fe3-b9c0fed1e671
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article