9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eugenol: A novel therapeutic agent for the inhibition of Candida species infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high occurrence and mortality rates related to candidiasis emphasize the urgent need to introduce new therapeutic approaches to treat this infection. Eugenol, the main phenolic component of Clove and Cinnamomum essential oil, has been used to inhibit growth and different virulence factors of Candida, including strains with decreased susceptibility to antifungals, particularly fluconazole. The results showed that this compound could bind to Candida membrane and decrease ergosterol biosynthesis, consequently leading to cell wall and membrane damage. Additionally, eugenol not only reduced germ tube formation, which reduces nutrient absorption from host tissues, but it also increased the levels of lipid peroxidation and reactive oxygen species, which induces oxidative stress and causes high permeability in the fungal cell membrane. Eugenol inhibited Candida cells’ adhesion capacity; additionally, this compound inhibited the formation of biofilms and eliminated established Candida biofilms on a variety of surfaces. Furthermore, by disrupting fungal cell integrity, eugenol could boost the entry of the antifungal drugs into the Candida cell, improving treatment efficacy. Therefore, eugenol could be used in the clinical management of various presentations of candidiasis, especially mucocutaneous presentations such as oral and vulvovaginal infections. However, further investigations, including in vivo and animal studies, toxicology studies and clinical trials, as well as molecular analysis, are needed to improve formulations and develop novel antifungal agents based on eugenol.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive candidiasis

          Invasive candidiasis is an important health-care-associated fungal infection that can be caused by several Candida spp.; the most common species is Candida albicans, but the prevalence of these organisms varies considerably depending on geographical location. The spectrum of disease of invasive candidiasis ranges from minimally symptomatic candidaemia to fulminant sepsis with an associated mortality exceeding 70%. Candida spp. are common commensal organisms in the skin and gut microbiota, and disruptions in the cutaneous and gastrointestinal barriers (for example, owing to gastrointestinal perforation) promote invasive disease. A deeper understanding of specific Candida spp. virulence factors, host immune response and host susceptibility at the genetic level has led to key insights into the development of early intervention strategies and vaccine candidates. The early diagnosis of invasive candidiasis is challenging but key to the effective management, and the development of rapid molecular diagnostics could improve the ability to intervene rapidly and potentially reduce mortality. First-line drugs, including echinocandins and azoles, are effective, but the emergence of antifungal resistance, especially among Candida glabrata, is a matter of concern and underscores the need to administer antifungal medications in a judicious manner, avoiding overuse when possible. A newly described pathogen, Candida auris, is an emerging multidrug-resistant organism that poses a global threat.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study.

            Nosocomial bloodstream infections (BSIs) are important causes of morbidity and mortality in the United States. Data from a nationwide, concurrent surveillance study (Surveillance and Control of Pathogens of Epidemiological Importance [SCOPE]) were used to examine the secular trends in the epidemiology and microbiology of nosocomial BSIs. Our study detected 24,179 cases of nosocomial BSI in 49 US hospitals over a 7-year period from March 1995 through September 2002 (60 cases per 10,000 hospital admissions). Eighty-seven percent of BSIs were monomicrobial. Gram-positive organisms caused 65% of these BSIs, gram-negative organisms caused 25%, and fungi caused 9.5%. The crude mortality rate was 27%. The most-common organisms causing BSIs were coagulase-negative staphylococci (CoNS) (31% of isolates), Staphylococcus aureus (20%), enterococci (9%), and Candida species (9%). The mean interval between admission and infection was 13 days for infection with Escherichia coli, 16 days for S. aureus, 22 days for Candida species and Klebsiella species, 23 days for enterococci, and 26 days for Acinetobacter species. CoNS, Pseudomonas species, Enterobacter species, Serratia species, and Acinetobacter species were more likely to cause infections in patients in intensive care units (P<.001). In neutropenic patients, infections with Candida species, enterococci, and viridans group streptococci were significantly more common. The proportion of S. aureus isolates with methicillin resistance increased from 22% in 1995 to 57% in 2001 (P<.001, trend analysis). Vancomycin resistance was seen in 2% of Enterococcus faecalis isolates and in 60% of Enterococcus faecium isolates. In this study, one of the largest multicenter studies performed to date, we found that the proportion of nosocomial BSIs due to antibiotic-resistant organisms is increasing in US hospitals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Candida albicans pathogenicity mechanisms

              The polymorphic fungus Candida albicans is a member of the normal human microbiome. In most individuals, C. albicans resides as a lifelong, harmless commensal. Under certain circumstances, however, C. albicans can cause infections that range from superficial infections of the skin to life-threatening systemic infections. Several factors and activities have been identified which contribute to the pathogenic potential of this fungus. Among them are molecules which mediate adhesion to and invasion into host cells, the secretion of hydrolases, the yeast-to-hypha transition, contact sensing and thigmotropism, biofilm formation, phenotypic switching and a range of fitness attributes. Our understanding of when and how these mechanisms and factors contribute to infection has significantly increased during the last years. In addition, novel virulence mechanisms have recently been discovered. In this review we present an update on our current understanding of the pathogenicity mechanisms of this important human pathogen.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                09 August 2022
                2022
                : 13
                : 872127
                Affiliations
                [1] 1 Department of Medical Parasitology and Mycology , Arak University of Medical Sciences , Arak, Iran
                [2] 2 Department of Microbiology , School of Medicine , Hamadan University of Medical Sciences , Hamadan, Iran
                [3] 3 Molecular and Medicine Research Center , Khomein University of Medical Sciences , Khomein, Iran
                [4] 4 Department of Medical Laboratory Sciences , Khomein University of Medical Sciences , Khomein, Iran
                Author notes

                Edited by: Mustofa Mustofa, Gadjah Mada University, Indonesia

                Reviewed by: Letizia Angiolella, Sapienza University of Rome, Italy

                Monica Zuzarte, University of Coimbra, Portugal

                *Correspondence: Aref Shariati, arefshariati0111@ 123456sbmu.ac.ir

                This article was submitted to Pharmacology of Infectious Diseases, a section of the journal Frontiers in Pharmacology

                Article
                872127
                10.3389/fphar.2022.872127
                9395595
                36016558
                04607b1e-0438-4564-ad2f-4c99ecb39c3f
                Copyright © 2022 Didehdar, Chegini and Shariati.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 February 2022
                : 13 July 2022
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                eugenol, candida species,new antifungal agent,biofilm,combination therapy

                Comments

                Comment on this article