41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of mutation spectrum of common deafness-causing genes in Hakka newborns in southern China by semiconductor sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hearing loss is a common neurosensory disorder, approximately half of the cases are caused by genetic factors, and approximately 70% of hereditary hearing impairments are nonsyndromic hearing loss (NSHL). The mutations of GJB2 (gap junction beta-2 protein) , GJB3 (gap junction beta-3 protein), SLC26A4 (solute carrier family 26 member 4), and MT-RNR1 (mitochondrially encoded 12S RNA) are the most common inherited causes of NSHL. Because of different genetic backgrounds, the mutation spectrum of these common deafness-causing genes varies among different regions in China. Because no data are known on these mutations among the Hakka population of Southern China, we aim to investigate the mutation spectrum to add these to neonatal screening and genetic counseling. A total of 1252 blood samples from newborns have been detected by semiconductor sequencing for 100 mutations loci of 18 deafness-causing genes. Of the participants, 95 subjects carried deafness-causing genes mutations with the carrier rate of 7.59%. The mutation frequencies of GJB2, SLC26A4, GJB3, and mitochondrial genes were 3.04%, 3.51%, 0.16%, and 0.88%, respectively. We followed up subjects with single-gene homozygous or compound heterozygous mutations. Our study firstly analyzed deafness-causing genes mutation spectrum in Hakka population, providing evidence for future neonatal screening and genetic counseling in this area.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics?

          Hearing impairment is the most common sensory disorder, present in 1 of every 500 newborns. With 46 genes implicated in nonsyndromic hearing loss, it is also an extremely heterogeneous trait. Here, we categorize for the first time all mutations reported in nonsyndromic deafness genes, both worldwide and more specifically in Caucasians. The most frequent genes implicated in autosomal recessive nonsyndromic hearing loss are GJB2, which is responsible for more than half of cases, followed by SLC26A4, MYO15A, OTOF, CDH23 and TMC1. None of the genes associated with autosomal dominant nonsyndromic hearing loss accounts for a preponderance of cases, although mutations are somewhat more frequently reported in WFS1, KCNQ4, COCH and GJB2. Only a minority of these genes is currently included in genetic diagnostics, the selection criteria typically reflecting: (1) high frequency as a cause of deafness (i.e. GJB2); (2) association with another recognisable feature (i.e. SLC26A4 and enlarged vestibular aqueduct); or (3) a recognisable audioprofile (i.e. WFS1). New and powerful DNA sequencing technologies have been developed over the past few years, but have not yet found their way into DNA diagnostics. Implementing these technologies is likely to happen within the next 5 years, and will cause a breakthrough in terms of power and cost efficiency. It will become possible to analyze most - if not all - deafness genes, as opposed to one or a few genes currently. This ability will greatly improve DNA diagnostics, provide epidemiological data on gene-based mutation frequencies, and reveal novel genotype-phenotype correlations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic structure of the Han Chinese population revealed by genome-wide SNP variation.

            Population stratification is a potential problem for genome-wide association studies (GWAS), confounding results and causing spurious associations. Hence, understanding how allele frequencies vary across geographic regions or among subpopulations is an important prelude to analyzing GWAS data. Using over 350,000 genome-wide autosomal SNPs in over 6000 Han Chinese samples from ten provinces of China, our study revealed a one-dimensional "north-south" population structure and a close correlation between geography and the genetic structure of the Han Chinese. The north-south population structure is consistent with the historical migration pattern of the Han Chinese population. Metropolitan cities in China were, however, more diffused "outliers," probably because of the impact of modern migration of peoples. At a very local scale within the Guangdong province, we observed evidence of population structure among dialect groups, probably on account of endogamy within these dialects. Via simulation, we show that empirical levels of population structure observed across modern China can cause spurious associations in GWAS if not properly handled. In the Han Chinese, geographic matching is a good proxy for genetic matching, particularly in validation and candidate-gene studies in which population stratification cannot be directly accessed and accounted for because of the lack of genome-wide data, with the exception of the metropolitan cities, where geographical location is no longer a good indicator of ancestral origin. Our findings are important for designing GWAS in the Chinese population, an activity that is expected to intensify greatly in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family.

              We report here the characterization of a large Chinese family with maternally transmitted aminoglycoside-induced and nonsyndromic deafness. In the absence of aminoglycosides, some matrilineal relatives in this family exhibited late-onset/progressive deafness, with a wide range of severity and age at onset. Notably, the average age at onset of deafness has changed from 55 years (generation II) to 10 years (generation IV). Clinical data reveal that the administration of aminoglycosides can induce or worsen deafness in matrilineal relatives. The age at the time of drug administration appears to be correlated with the severity of hearing loss experienced by affected individuals. Sequence analysis of mitochondrial DNA in this pedigree identified a homoplasmic C-to-T transition at position 1494 (C1494T) in the 12S rRNA gene. The C1494T mutation is expected to form a novel U1494-1555A base pair, which is in the same position as the C1494-1555G pair created by the deafness-associated A1555G mutation, at the highly conserved A site of 12S rRNA. Exposure to a high concentration of paromomycin or neomycin caused a variable but significant average increase in doubling time in lymphoblastoid cell lines derived from four symptomatic and two asymptomatic individuals in this family carrying the C1494T mutation when compared to four control cell lines. Furthermore, a significant decrease in the rate of total oxygen consumption was observed in the mutant cell lines. Thus, our data strongly support the idea that the A site of mitochondrial 12S rRNA is the primary target for aminoglycoside-induced deafness. These results also strongly suggest that the nuclear background plays a role in the aminoglycoside ototoxicity and in the development of the deafness phenotype associated with the C1494T mutation in the mitochondrial 12S rRNA gene.
                Bookmark

                Author and article information

                Journal
                Medicine (Baltimore)
                Medicine (Baltimore)
                MEDI
                Medicine
                Wolters Kluwer Health
                0025-7974
                1536-5964
                September 2018
                21 September 2018
                : 97
                : 38
                : e12285
                Affiliations
                [a ]Clinical Core Laboratory
                [b ]Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
                [c ]Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
                [d ]Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
                [e ]Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders
                [f ]Prenatal Diagnosis Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, P. R. China.
                Author notes
                []Correspondence: Pingsen Zhao, Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, No 63 Huangtang Road, Meijiang District, Meizhou 514031, P. R. China (e-mails: zhaopingsen01@ 123456163.com , zhaopingsen@ 123456hotmail.com ).
                Article
                MD-D-18-02415 12285
                10.1097/MD.0000000000012285
                6160144
                30235673
                0452cc3d-5e88-4646-88b3-4f4d58c20b6d
                Copyright © 2018 the Author(s). Published by Wolters Kluwer Health, Inc.

                This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0

                History
                : 5 April 2018
                : 15 August 2018
                Categories
                3500
                Research Article
                Observational Study
                Custom metadata
                TRUE

                deafness-causing genes,gjb,gjb3,hakka population,mitochondrial genes,semiconductor sequencing,slc26a4

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content287

                Cited by3

                Most referenced authors571