Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are “genome-scale” and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME) to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.
Systems biology aims to characterize cells and organisms as systems through the careful curation of all components. Large models that account for all known metabolism in microorganisms have been created by our group and by others around the world. Furthermore, models are available for human cells. These models represent all possible biochemical reactions in a cell, but cells choose which subset of reactions to use to suit their immediate purposes. We have developed a method to combine widely available gene expression data with presupposed cellular functions to predict the subset of reactions that a cell uses under particular conditions. We quantify the consistency of subsets of reactions with existing biological knowledge to demonstrate that the method produces biologically realistic subsets of reactions. This method is useful for determining the activity of metabolic reactions in Escherichia coli and will be essential for understanding human cellular metabolism.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.