25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Straw, mainly dry stalks of crops, is an agricultural byproduct. Its incorporation to soils via microbial redistribution is an environment-friendly way to increase fertility. Fertilization influences soil microorganisms and straw degradation. However, our up to date knowledge on the responses of the straw decomposers to fertilization remains elusive. To this end, inoculated with paddy soils with 26-year applications of chemical fertilizers, organic amendments or controls without fertilization, microcosms were anoxically incubated with 13C-labelled rice straw amendment. DNA-based stable isotope probing and molecular ecological network analysis were conducted to unravel how straw degrading bacterial species shift in responses to fertilizations, as well as evaluate what their roles/links in the microbiome are. It was found that only a small percentage of the community ecotypes was participating into straw degradation under both fertilizations. Fertilization, especially with organic amendments decreased the predominance of Firmicutes- and Acidobacteria-like straw decomposers but increased those of the copiotrophs, such as β- Proteobacteria and Bacteroidetes due to increased soil fertility. For the same reason, fertilization shifted the hub species towards those of high degrading potential and created a more stable and efficient microbial consortium. These findings indicate that fertilization shapes a well-organized community of decomposers for accelerated straw degradation.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Error and attack tolerance of complex networks

            Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?

                Bookmark

                Author and article information

                Contributors
                yzfeng@issas.ac.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 May 2018
                22 May 2018
                2018
                : 8
                : 7981
                Affiliations
                [1 ]ISNI 0000 0001 2156 4508, GRID grid.458485.0, State Key Laboratory of Soil and Sustainable Agriculture, , Institute of Soil Science, Chinese Academy of Sciences, ; Nanjing, 210008 P.R. China
                [2 ]ISNI 0000 0001 0462 7212, GRID grid.1006.7, School of Civil Engineering and Geosciences, , Newcastle University, ; Newcastle upon Tyne, NE1 7RU UK
                Article
                26375
                10.1038/s41598-018-26375-8
                5964224
                29789525
                041bdeb3-bc3c-41d9-8cf2-b1efb34bb369
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 14 February 2018
                : 2 May 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article