21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CDK Substrate Phosphorylation and Ordering the Cell Cycle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          S phase and mitotic onset are brought about by the action of multiple different cyclin-CDK complexes. However, it has been suggested that changes in the total level of CDK kinase activity, rather than substrate specificity, drive the temporal ordering of S phase and mitosis. Here, we present a phosphoproteomics-based systems analysis of CDK substrates in fission yeast and demonstrate that the phosphorylation of different CDK substrates can be temporally ordered during the cell cycle by a single cyclin-CDK. This is achieved by rising CDK activity and the differential sensitivity of substrates to CDK activity over a wide dynamic range. This is combined with rapid phosphorylation turnover to generate clearly resolved substrate-specific activity thresholds, which in turn ensures the appropriate ordering of downstream cell-cycle events. Comparative analysis with wild-type cells expressing multiple cyclin-CDK complexes reveals how cyclin-substrate specificity works alongside activity thresholds to fine-tune the patterns of substrate phosphorylation.

          Graphical Abstract

          Highlights

          • Global analysis of CDK substrates and their phosphorylation dynamics in fission yeast

          • CDK substrate phosphorylation can be temporally ordered by a single cyclin-CDK

          • Substrate-specific activity thresholds set phosphorylation timing and cell-cycle order

          • Cyclin-substrate specificity provides a secondary, more minor, level of regulation

          Abstract

          A systems analysis of CDK substrates in yeast shows that the phosphorylation of different CDK substrates can be temporally ordered during the cell cycle by a single cyclin-CDK via rising CDK activity and the differential sensitivity of substrates to CDK activity.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.

          Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cdk1 is sufficient to drive the mammalian cell cycle.

            Unicellular organisms such as yeasts require a single cyclin-dependent kinase, Cdk1, to drive cell division. In contrast, mammalian cells are thought to require the sequential activation of at least four different cyclin-dependent kinases, Cdk2, Cdk3, Cdk4 and Cdk6, to drive cells through interphase, as well as Cdk1 to proceed through mitosis. This model has been challenged by recent genetic evidence that mice survive in the absence of individual interphase Cdks. Moreover, most mouse cell types proliferate in the absence of two or even three interphase Cdks. Similar results have been obtained on ablation of some of the activating subunits of Cdks, such as the D-type and E-type cyclins. Here we show that mouse embryos lacking all interphase Cdks (Cdk2, Cdk3, Cdk4 and Cdk6) undergo organogenesis and develop to midgestation. In these embryos, Cdk1 binds to all cyclins, resulting in the phosphorylation of the retinoblastoma protein pRb and the expression of genes that are regulated by E2F transcription factors. Mouse embryonic fibroblasts derived from these embryos proliferate in vitro, albeit with an extended cell cycle due to inefficient inactivation of Rb proteins. However, they become immortal on continuous passage. We also report that embryos fail to develop to the morula and blastocyst stages in the absence of Cdk1. These results indicate that Cdk1 is the only essential cell cycle Cdk. Moreover, they show that in the absence of interphase Cdks, Cdk1 can execute all the events that are required to drive cell division.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.

              To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cell
                Cell
                Cell
                Cell Press
                0092-8674
                1097-4172
                15 December 2016
                15 December 2016
                : 167
                : 7
                : 1750-1761.e16
                Affiliations
                [1 ]Cell Cycle Laboratory, The Francis Crick Institute, London NW1 1AT, UK
                [2 ]Protein Analysis and Proteomics Platform, The Francis Crick Institute, London NW1 1AT, UK
                [3 ]Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY 10065, USA
                Author notes
                []Corresponding author matthew.swaffer@ 123456crick.ac.uk
                [4]

                Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA

                [5]

                Lead Contact

                Article
                S0092-8674(16)31606-3
                10.1016/j.cell.2016.11.034
                5161751
                27984725
                0413db75-102b-4733-a165-1ed2bb625c79
                © 2016 The Francis Crick Institute

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 1 May 2016
                : 14 October 2016
                : 16 November 2016
                Categories
                Article

                Cell biology
                cdk,cyclin-dependent kinase,cell cycle,s phase,mitosis,phosphorylation,kinase,phosphoproteomics
                Cell biology
                cdk, cyclin-dependent kinase, cell cycle, s phase, mitosis, phosphorylation, kinase, phosphoproteomics

                Comments

                Comment on this article