60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Brain renin-angiotensin system and dopaminergic cell vulnerability

      aging, angiotensin, dopamine, nadph-oxidase, neurodegeneration, neuroinflammation, oxidative stress, parkinson

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson’s disease.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: not found
          • Article: not found

          NADPH oxidase: an update.

          B Babior (1999)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction.

            Mitochondrial dysfunction is a prominent feature of most cardiovascular diseases. Angiotensin (Ang) II is an important stimulus for atherogenesis and hypertension; however, its effects on mitochondrial function remain unknown. We hypothesized that Ang II could induce mitochondrial oxidative damage that in turn might decrease endothelial nitric oxide (NO.) bioavailability and promote vascular oxidative stress. The effect of Ang II on mitochondrial ROS, mitochondrial respiration, membrane potential, glutathione, and endothelial NO. was studied in isolated mitochondria and intact bovine aortic endothelial cells using electron spin resonance, dihydroethidium high-performance liquid chromatography -based assay, Amplex Red and cationic dye fluorescence. Ang II significantly increased mitochondrial H2O2 production. This increase was blocked by preincubation of intact cells with apocynin (NADPH oxidase inhibitor), uric acid (scavenger of peroxynitrite), chelerythrine (protein kinase C inhibitor), N(G)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), 5-hydroxydecanoate (mitochondrial ATP-sensitive potassium channels inhibitor), or glibenclamide. Depletion of p22(phox) subunit of NADPH oxidase with small interfering RNA also inhibited Ang II-mediated mitochondrial ROS production. Ang II depleted mitochondrial glutathione, increased state 4 and decreased state 3 respirations, and diminished mitochondrial respiratory control ratio. These responses were attenuated by apocynin, 5-hydroxydecanoate, and glibenclamide. In addition, 5-hydroxydecanoate prevented the Ang II-induced decrease in endothelial NO. and mitochondrial membrane potential. Therefore, Ang II induces mitochondrial dysfunction via a protein kinase C-dependent pathway by activating the endothelial cell NADPH oxidase and formation of peroxynitrite. Furthermore, mitochondrial dysfunction in response to Ang II modulates endothelial NO. and generation, which in turn has ramifications for development of endothelial dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Neuroinflammation mediated by IL-1β increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson's disease

              Background The etiology of Parkinson's disease (PD) remains elusive despite identification of several genetic mutations. It is more likely that multiple factors converge to give rise to PD than any single cause. Here we report that inflammation can trigger degeneration of dopamine (DA) neurons in an animal model of Parkinson's disease. Methods We examined the effects of inflammation on the progressive 6-OHDA rat model of Parkinson's disease using immunohistochemistry, multiplex ELISA, and cell counting stereology. Results We show that a non-toxic dose of lipopolysaccharide (LPS) induced secretion of cytokines and predisposed DA neurons to be more vulnerable to a subsequent low dose of 6-hydroxydopamine. Alterations in cytokines, prominently an increase in interleukin-1beta (IL-1β), were identified as being potential mediators of this effect that was associated with activation of microglia. Administration of an interleukin-1 receptor antagonist resulted in significant reductions in tumor necrosis factor-α and interferon-γ and attenuated the augmented loss of DA neurons caused by the LPS-induced sensitization to dopaminergic degeneration. Conclusion These data provide insight into the etiology of PD and support a role for inflammation as a risk factor for the development of neurodegenerative disease.
                Bookmark

                Author and article information

                Journal
                4086395
                10.3389/fnana.2014.00067
                25071471
                http://creativecommons.org/licenses/by/3.0/

                Neurosciences
                aging,angiotensin,dopamine,nadph-oxidase,neurodegeneration,neuroinflammation,oxidative stress,parkinson

                Comments

                Comment on this article

                scite_
                100
                0
                86
                0
                Smart Citations
                100
                0
                86
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content516

                Cited by43

                Most referenced authors1,231