24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cancer progression by reprogrammed BCAA metabolism in myeloid leukemia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Reprogrammed cellular metabolism is a common characteristic observed in various cancers 1, 2 . However, whether metabolic changes directly regulate cancer development and progression remains poorly understood. Here we show that BCAT1, a cytosolic aminotransferase for the branched-chain amino acids (BCAAs), is aberrantly activated and functionally required for chronic myeloid leukemia (CML). BCAT1 is up-regulated during CML progression and promotes BCAA production in leukemia cells by aminating the branched-chain keto acids. Blocking BCAT1 expression or enzymatic activity induces cellular differentiation and impairs the propagation of blast crisis CML (BC-CML) both in vitro and in vivo. Stable isotope tracer experiments combined with NMR-based metabolic analysis demonstrate the intracellular production of BCAAs by BCAT1. Direct supplementation with BCAAs ameliorates the defects caused by BCAT1 knockdown, indicating that BCAT1 exerts its oncogenic function via BCAA production in BC-CML cells. Importantly, BCAT1 expression not only is activated in human BC-CML and de novo acute myeloid leukemia but also predicts disease outcome in patients. As an upstream regulator of BCAT1 expression, we identified Musashi2 (MSI2), an oncogenic RNA binding protein that is required for BC-CML. MSI2 is physically associated with the BCAT1 transcript and positively regulates its protein expression in leukemia. Taken together, this work reveals that altered BCAA metabolism activated through the MSI2-BCAT1 axis drives cancer progression in myeloid leukemia.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Sestrin2 is a leucine sensor for the mTORC1 pathway.

          Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acid signalling upstream of mTOR.

            Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that is part of mTOR complex 1 (mTORC1), a master regulator that couples amino acid availability to cell growth and autophagy. Multiple cues modulate mTORC1 activity, such as growth factors, stress, energy status and amino acids. Although amino acids are key environmental stimuli, exactly how they are sensed and how they activate mTORC1 is not fully understood. Recently, a model has emerged whereby mTORC1 activation occurs at the lysosome and is mediated through an amino acid sensing cascade involving RAG GTPases, Ragulator and vacuolar H(+)-ATPase (v-ATPase).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of mTORC1 by amino acids.

              The mechanistic target of rapamycin complex I (mTORC1) is a central regulator of cellular and organismal growth, and hyperactivation of this pathway is implicated in the pathogenesis of many human diseases including cancer and diabetes. mTORC1 promotes growth in response to the availability of nutrients, such as amino acids, which drive mTORC1 to the lysosomal surface, its site of activation. How amino acid levels are communicated to mTORC1 is only recently coming to light by the discovery of a lysosome-based signaling system composed of Rags (Ras-related GTPases) and Ragulator v-ATPase, GATOR (GAP activity towards Rags), and folliculin (FLCN) complexes. Increased understanding of this pathway will not only provide insight into growth control but also into the human pathologies triggered by its deregulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                13 April 2017
                17 May 2017
                25 May 2017
                17 November 2017
                : 545
                : 7655
                : 500-504
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602
                [2 ]UGA Cancer Center, The University of Georgia, Athens, GA 30602
                [3 ]Department of Genetics, The University of Georgia, Athens, GA 30602
                [4 ]Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602
                [5 ]Institute of Bioinformatics, The University of Georgia, Athens, GA 30602
                [6 ]Department of Pathology, The University of Georgia, Athens, GA 30602
                [7 ]Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
                [8 ]Department of Hematology and Oncology, The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639, Japan
                Article
                NIHMS864881
                10.1038/nature22314
                5554449
                28514443
                03da8fa1-0b9d-4198-b372-95a18f04bcb0

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article