33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bright emission from a random Raman laser

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Random lasers are a developing class of light sources that utilize a highly disordered gain medium as opposed to a conventional optical cavity. Although traditional random lasers often have a relatively broad emission spectrum, a random laser that utilizes vibration transitions via Raman scattering allows for an extremely narrow bandwidth, on the order of 10 cm −1. Here we demonstrate the first experimental evidence of lasing via a Raman interaction in a bulk three-dimensional random medium, with conversion efficiencies on the order of a few percent. Furthermore, Monte Carlo simulations are used to study the complex spatial and temporal dynamics of nonlinear processes in turbid media. In addition to providing a large signal, characteristic of the Raman medium, the random Raman laser offers us an entirely new tool for studying the dynamics of gain in a turbid medium.

          Abstract

          Unlike conventional lasers that require a uniform resonant cavity to operate, random lasers use a highly disordered gain medium in which scattering is dominant. Hokr et al. report Raman lasing from a bulk three-dimensional disordered medium whose intensity exceeds that of other random lasers by many orders of magnitude.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy.

          Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Weak localization and coherent backscattering of photons in disordered media.

            (1985)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Non-invasive imaging through opaque scattering layers.

              Non-invasive optical imaging techniques, such as optical coherence tomography, are essential diagnostic tools in many disciplines, from the life sciences to nanotechnology. However, present methods are not able to image through opaque layers that scatter all the incident light. Even a very thin layer of a scattering material can appear opaque and hide any objects behind it. Although great progress has been made recently with methods such as ghost imaging and wavefront shaping, present procedures are still invasive because they require either a detector or a nonlinear material to be placed behind the scattering layer. Here we report an optical method that allows non-invasive imaging of a fluorescent object that is completely hidden behind an opaque scattering layer. We illuminate the object with laser light that has passed through the scattering layer. We scan the angle of incidence of the laser beam and detect the total fluorescence of the object from the front. From the detected signal, we obtain the image of the hidden object using an iterative algorithm. As a proof of concept, we retrieve a detailed image of a fluorescent object, comparable in size (50 micrometres) to a typical human cell, hidden 6 millimetres behind an opaque optical diffuser, and an image of a complex biological sample enclosed between two opaque screens. This approach to non-invasive imaging through strongly scattering media can be generalized to other contrast mechanisms and geometries.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                11 July 2014
                : 5
                : 4356
                Affiliations
                [1 ]Department of Physics & Astronomy, Texas A&M University , College Station, Texas 77843, USA
                [2 ]Department of Biomedical Engineering, Texas A&M University , Texas 77843, USA
                [3 ]711th Human Performance Wing, Human Effectiveness Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch , JBSA Fort Sam Houston, Texas 78234, USA
                [4 ]TASC Inc. , San Antonio, Texas 78228, USA
                [5 ]Faculty of Physics, M. V. Lomonosov Moscow State University , Moscow 119991, Russia
                Author notes
                Article
                ncomms5356
                10.1038/ncomms5356
                4104439
                25014073
                03bfacbe-562c-4a05-82a6-a1e3fec7045b
                Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 October 2013
                : 10 June 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article