11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects

      , , ,
      Antioxidants
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling has become a key pathway for cellular regulation against oxidative stress and inflammation, and therefore an attractive therapeutic target. Several organosulfur compounds are reportedly activators of the Nrf2 pathway. Organosulfur compounds constitute an important class of therapeutic agents in medicinal chemistry due to their ability to participate in biosynthesis, metabolism, cellular functions, and protection of cells from oxidative damage. Sulfur has distinctive chemical properties such as a large number of oxidation states and versatility of reactions that promote fundamental biological reactions and redox biochemistry. The presence of sulfur is responsible for the peculiar features of organosulfur compounds which have been utilized against oxidative stress-mediated diseases. Nrf2 activation being a key therapeutic strategy for oxidative stress is closely tied to sulfur-based chemistry since the ability of compounds to react with sulfhydryl (-SH) groups is a common property of Nrf2 inducers. Although some individual organosulfur compounds have been reported as Nrf2 activators, there are no papers with a collective analysis of these Nrf2-activating organosulfur compounds which may help to broaden the knowledge of their therapeutic potentials and motivate further research. In line with this fact, for the first time, this review article provides collective and comprehensive information on Nrf2-activating organosulfur compounds and their therapeutic effects against oxidative stress, thereby enriching the chemical and pharmacological diversity of Nrf2 activators.

          Related collections

          Most cited references224

          • Record: found
          • Abstract: found
          • Article: not found

          Glutathione: overview of its protective roles, measurement, and biosynthesis.

          This review is the introduction to a special issue concerning, glutathione (GSH), the most abundant low molecular weight thiol compound synthesized in cells. GSH plays critical roles in protecting cells from oxidative damage and the toxicity of xenobiotic electrophiles, and maintaining redox homeostasis. Here, the functions and GSH and the sources of oxidants and electrophiles, the elimination of oxidants by reduction and electrophiles by conjugation with GSH are briefly described. Methods of assessing GSH status in the cells are also described. GSH synthesis and its regulation are addressed along with therapeutic approaches for manipulating GSH content that have been proposed. The purpose here is to provide a brief overview of some of the important aspects of glutathione metabolism as part of this special issue that will provide a more comprehensive review of the state of knowledge regarding this essential molecule.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NRF2 and the Hallmarks of Cancer

            The transcription factor NRF2 is the master regulator of the cellular antioxidant response. Though recognized originally as a target of chemopreventive compounds that help prevent cancer and other maladies, accumulating evidence has established the NRF2 pathway as a driver of cancer progression, metastasis, and resistance to therapy. Recent studies have identified new functions for NRF2 in the regulation of metabolism and other essential cellular functions, establishing NRF2 as a truly pleiotropic transcription factor. In this review, we explore the roles of NRF2 in the hallmarks of cancer, indicating both tumor suppressive and tumor-promoting effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.

              The induction of phase II detoxifying enzymes is an important defense mechanism against intake of xenobiotics. While this group of enzymes is believed to be under the transcriptional control of antioxidant response elements (AREs), this contention is experimentally unconfirmed. Since the ARE resembles the binding sequence of erythroid transcription factor NF-E2, we investigated the possibility that the phase II enzyme genes might be regulated by transcription factors that also bind to the NF-E2 sequence. The expression profiles of a number of transcription factors suggest that an Nrf2/small Maf heterodimer is the most likely candidate to fulfill this role in vivo. To directly test these questions, we disrupted the murine nrf2 gene in vivo. While the expression of phase II enzymes (e.g., glutathione S-transferase and NAD(P)H: quinone oxidoreductase) was markedly induced by a phenolic antioxidant in vivo in both wild type and heterozygous mutant mice, the induction was largely eliminated in the liver and intestine of homozygous nrf2-mutant mice. Nrf2 was found to bind to the ARE with high affinity only as a heterodimer with a small Maf protein, suggesting that Nrf2/small Maf activates gene expression directly through the ARE. These results demonstrate that Nrf2 is essential for the transcriptional induction of phase II enzymes and the presence of a coordinate transcriptional regulatory mechanism for phase II enzyme genes. The nrf2-deficient mice may prove to be a very useful model for the in vivo analysis of chemical carcinogenesis and resistance to anti-cancer drugs.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                ANTIGE
                Antioxidants
                Antioxidants
                MDPI AG
                2076-3921
                July 2022
                June 26 2022
                : 11
                : 7
                : 1255
                Article
                10.3390/antiox11071255
                35883746
                03a3b42a-1616-4230-bbe1-967b7a99e044
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article