1,723
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ellagic acid improved arrhythmias induced by CaCL 2 in the rat stress model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective:

          In ventricular arrhythmias, due to their free radical scavenging action, antioxidant agents are usually used in the treatment of cardiovascular disease. Since stress is considered as risk factor for increased mortality by causing malignant arrhythmias, the study was designed to evaluate the cardioprotective effects of ellagic acid (EA) on CaCl 2-induced arrhythmias in rat stress model.

          Materials and Methods:

          Male Sprague-Dawley rats (200-250 g) were divided into four groups: Group I: Control rats (2 ml of saline by gavage), Group II: Rats treated with EA (15 mg/kg, gavage), Group III: stress group, Group IV: received EA plus stress. Stress was applied in a restrainer box (6 hour/day, 21 days). After induction of anesthesia, lead II electrocardiogram was recorded for calculating heart rate and QRS complex. The arrhythmia was produced by injection of CaCl 2 solution (140 mg/kg, iv) and incidences of Ventricular fibrillation, Ventricular premature beats and Ventricular tachycardia were recorded. Results were analyzed by using one-way ANOVA and Fisher`s exact test. p<0.05 was considered as significant level.

          Results:

          The results showed a positive inotropic effect and negative chronotropic effect for the EA group in comparison with the control group. Incidence rates (%) of premature beats, ventricular fibrillation and ventricular tachycardia in stress group and all the arrhythmia parameters decreased in groups which received EA.

          Conclusions:

          By decreasing the incidence rates of premature beats, fibrillation and ventricular tachycardia in groups which received EA, ellagic acid probably acted as an anti-arrhythmic agent which showed to have aprotective functionin heart.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of Psychological Factors on the Pathogenesis of Cardiovascular Disease and Implications for Therapy

          Recent studies provide clear and convincing evidence that psychosocial factors contribute significantly to the pathogenesis and expression of coronary artery disease (CAD). This evidence is composed largely of data relating CAD risk to 5 specific psychosocial domains: (1) depression, (2) anxiety, (3) personality factors and character traits, (4) social isolation, and (5) chronic life stress. Pathophysiological mechanisms underlying the relationship between these entities and CAD can be divided into behavioral mechanisms, whereby psychosocial conditions contribute to a higher frequency of adverse health behaviors, such as poor diet and smoking, and direct pathophysiological mechanisms, such as neuroendocrine and platelet activation. An extensive body of evidence from animal models (especially the cynomolgus monkey, Macaca fascicularis) reveals that chronic psychosocial stress can lead, probably via a mechanism involving excessive sympathetic nervous system activation, to exacerbation of coronary artery atherosclerosis as well as to transient endothelial dysfunction and even necrosis. Evidence from monkeys also indicates that psychosocial stress reliably induces ovarian dysfunction, hypercortisolemia, and excessive adrenergic activation in premenopausal females, leading to accelerated atherosclerosis. Also reviewed are data relating CAD to acute stress and individual differences in sympathetic nervous system responsivity. New technologies and research from animal models demonstrate that acute stress triggers myocardial ischemia, promotes arrhythmogenesis, stimulates platelet function, and increases blood viscosity through hemoconcentration. In the presence of underlying atherosclerosis (eg, in CAD patients), acute stress also causes coronary vasoconstriction. Recent data indicate that the foregoing effects result, at least in part, from the endothelial dysfunction and injury induced by acute stress. Hyperresponsivity of the sympathetic nervous system, manifested by exaggerated heart rate and blood pressure responses to psychological stimuli, is an intrinsic characteristic among some individuals. Current data link sympathetic nervous system hyperresponsivity to accelerated development of carotid atherosclerosis in human subjects and to exacerbated coronary and carotid atherosclerosis in monkeys. Thus far, intervention trials designed to reduce psychosocial stress have been limited in size and number. Specific suggestions to improve the assessment of behavioral interventions include more complete delineation of the physiological mechanisms by which such interventions might work; increased use of new, more convenient "alternative" end points for behavioral intervention trials; development of specifically targeted behavioral interventions (based on profiling of patient factors); and evaluation of previously developed models of predicting behavioral change. The importance of maximizing the efficacy of behavioral interventions is underscored by the recognition that psychosocial stresses tend to cluster together. When they do so, the resultant risk for cardiac events is often substantially elevated, equaling that associated with previously established risk factors for CAD, such as hypertension and hypercholesterolemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms.

            Chronic restraint stress for 6 h/21 days causes hippocampal CA3 apical dendritic retraction, which parallels spatial memory impairments in male rats. Recent research suggests that chronic immobilization stress for 2 h/10 days induces CA3 dendritic retraction [Vyas, A., Mitra, R., Shankaranarayana Rao, B.S., Chattarji, S., 2002. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810-6818.] and questions whether CA3 dendritic retraction and spatial memory deficits can be produced sooner than found following 6 h/21 days of restraint stress. Therefore, this study investigated the effects of four different durations of chronic restraint stress (varied by hours/day and total number of days) and the subsequent effects on hippocampal CA3 morphology and spatial memory in the same male Sprague-Dawley rats. The results showed that only rats exposed to the 6 h/21 days restraint paradigm exhibited CA3 apical dendritic retraction, consistent spatial memory deficits, and decreased body weight gain compared to experimental counterparts and controls. While chronically stressing a rat with wire mesh restraint has a physical component, it acts primarily as a psychological stressor, and these findings support the interpretation that chronic psychological stress produces hippocampal-dependent cognitive deficits that are consistent with hippocampal structural changes. Differences in stress effects observed across different studies may be due to rat strain, type of stressor, and housing conditions; however, the current findings support the use of chronic restraint stress, with wire mesh, for 6 h/21 days as a reliable and efficient method to produce psychological stress and to cause CA3 dendritic retraction and spatial memory deficits in male Sprague-Dawley rats.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats.

              Organisms are constantly subjected to stressful stimuli that affect numerous physiological processes and activate the hypothalamo-pituitary-adrenal (HPA) axis, increasing the release of glucocorticoids. Exposure to chronic stress is known to alter basic mechanisms of the stress response. The purpose of the present study was to compare the effect of two different stress paradigms (chronic restraint or variable stress) on behavioral and corticosterone release to a subsequent exposure to stressors. Considering that the HPA axis might respond differently when it is challenged with a novel or a familiar stressor we investigated the changes in the corticosterone levels following the exposure to two stressors: restraint (familiar stress) or forced novelty (novel stress). The changes in the behavioral response were evaluated by measuring the locomotor response to a novel environment. In addition, we examined changes in body, adrenals, and thymus weights in response to the chronic paradigms. Our results showed that exposure to chronic variable stress increased basal plasma corticosterone levels and that both, chronic restraint and variable stresses, promote higher corticosterone levels in response to a novel environment, but not to a challenge restraint stress, as compared to the control (non-stressed) group. Exposure to chronic restraint leads to increased novelty-induced locomotor activity. Furthermore, only the exposure to variable stress reduced body weights. In conclusion, the present results provide additional evidence on how chronic stress affects the organism physiology and point to the importance of the chronic paradigm and challenge stress on the behavioral and hormonal adaptations induced by chronic stress.
                Bookmark

                Author and article information

                Journal
                Avicenna J Phytomed
                Avicenna J Phytomed
                IJP
                Avicenna Journal of Phytomedicine
                Mashhad University of Medical Sciences (Mashhad, Iran )
                2228-7930
                2228-7949
                Mar-Apr 2015
                : 5
                : 2
                : 120-127
                Affiliations
                [1 ] Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
                Author notes
                [* ]Corresponding Author: Tel: +9809163110437, Fax: +986133337370, dianat@ajums.ac.ir
                Article
                AJP-5-120
                4418061
                25949953
                03973d47-6a8f-4beb-8522-a94dac7c4f0c

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 August 2014
                : 10 October 2014
                : 14 October 2014
                Categories
                Original Article

                ellagic acid,arrhythmia,inotropic,chronotropic,stress,rat
                ellagic acid, arrhythmia, inotropic, chronotropic, stress, rat

                Comments

                Comment on this article

                Similar content584

                Cited by5